Menu Close

f-x-ln-x-1-x-2-is-even-or-odd-give-reasion-




Question Number 11167 by agni5 last updated on 15/Mar/17
f(x)=ln∣x+(√((1+x^2 )))∣ is even or odd?   give reasion.
f(x)=lnx+(1+x2)isevenorodd?givereasion.
Answered by mrW1 last updated on 15/Mar/17
f(x)=ln∣x+(√((1+x^2 )))∣=ln (x+(√(1+x^2 )))  f(−x)=ln[−x+(√(1+(−x)^2 ))]  =ln(−x+(√(1+x^2 )))  =ln[(−x+(√(1+x^2 )))×((x+(√(1+x^2 )))/(x+(√(1+x^2 ))))]  =ln ((1+x^2 −x^2 )/(x+(√(1+x^2 ))))  =ln (1/(x+(√(1+x^2 ))))  =−ln (x+(√(1+x^2 )))  =−f(x)    ⇒f(x) is odd.
f(x)=lnx+(1+x2)∣=ln(x+1+x2)f(x)=ln[x+1+(x)2]=ln(x+1+x2)=ln[(x+1+x2)×x+1+x2x+1+x2]=ln1+x2x2x+1+x2=ln1x+1+x2=ln(x+1+x2)=f(x)f(x)isodd.
Answered by ajfour last updated on 15/Mar/17
f(−x)=ln ∣−x+(√(x^2 +1)) ∣      =ln ∣(1/(x+(√(x^2 +1))))∣=−ln∣x+(√(x^2 +1)) ∣  so it appears odd; should it not so be?
f(x)=lnx+x2+1=ln1x+x2+1∣=lnx+x2+1soitappearsodd;shoulditnotsobe?

Leave a Reply

Your email address will not be published. Required fields are marked *