Menu Close

f-x-x-ln-x-1-e-x-f-x-




Question Number 4993 by love math last updated on 29/Mar/16
f(x)=((x ln x)/(1+ e^x ))    f ′(x) − ?
f(x)=xlnx1+exf(x)?
Answered by FilupSmith last updated on 30/Mar/16
f(x)=(u/v)  ⇒  f ′(x)=((u′v−uv′)/v^2 )  u=xln(x)  ⇒  u′=1+ln(x)  v=1+e^x      ⇒   v′=e^x                         ⇒   v^2 =(1+e^x )^2     ∴f ′(x)=(((1+ln x)(1+e^x )−(xln x)e^x )/((1+e^x )^2 ))  f ′(x)=((1+e^x +ln x+e^x ln x−xe^x ln x)/((1+e^x )^2 ))  f ′(x)=((1+e^x +ln x(1+e^x (1−x)))/((1+e^x )^2 ))  f ′(x)=(1/(e^x +1))+(((1+e^x −xe^x )ln x)/((1+e^x )^2 ))  f ′(x)=(1/(e^x +1))+(((1+e^x )ln x−xe^x ln x)/((1+e^x )^2 ))  f ′(x)=(1/(e^x +1))+(((1+e^x )ln x)/((1+e^x )^2 ))−((xe^x ln(x))/((1+e^x )^2 ))  f ′(x)=(1/(1+e^x ))+((ln x)/(1+e^x ))−((xe^x ln(x))/((1+e^x )^2 ))
f(x)=uvf(x)=uvuvv2u=xln(x)u=1+ln(x)v=1+exv=exv2=(1+ex)2f(x)=(1+lnx)(1+ex)(xlnx)ex(1+ex)2f(x)=1+ex+lnx+exlnxxexlnx(1+ex)2f(x)=1+ex+lnx(1+ex(1x))(1+ex)2f(x)=1ex+1+(1+exxex)lnx(1+ex)2f(x)=1ex+1+(1+ex)lnxxexlnx(1+ex)2f(x)=1ex+1+(1+ex)lnx(1+ex)2xexln(x)(1+ex)2f(x)=11+ex+lnx1+exxexln(x)(1+ex)2
Commented by FilupSmith last updated on 30/Mar/16
Correct if wrong
Correctifwrong

Leave a Reply

Your email address will not be published. Required fields are marked *