Menu Close

f-x-x-sin-x-x-g-x-x-Why-is-f-x-0-on-g-x-Are-all-extrema-min-max-inflection-of-f-x-on-g-x-




Question Number 4040 by Filup last updated on 27/Dec/15
f(x)=x^(sin^x (x))   g(x)=x    Why is f ′(x)=0 on g(x)?    Are all extrema (min, max, inflection)  of f(x) on g(x)?
f(x)=xsinx(x)g(x)=xWhyisf(x)=0ong(x)?Areallextrema(min,max,inflection)off(x)ong(x)?
Commented by Filup last updated on 27/Dec/15
Commented by Filup last updated on 27/Dec/15
So, when does:  (df/dx)=g
So,whendoes:dfdx=g
Commented by Yozzii last updated on 27/Dec/15
f(x)=x^(sin^x x)       (∗)  If f(x),x>0, taking ln on both sides of (∗)  ⇒lnf(x)=(sin^x x)lnx   (∗∗)  Again, if lnf(x),(sin^x x)lnx>0,   taking ln on both sidds of (∗∗)  ⇒ln(lnf(x))=ln{(sin^x x)lnx}  ln(lnf(x))=xlnsinx+ln(lnx)  (∗∗∗)  Implicitly differentiating  (∗∗∗) w.r.t x  gives   (((d/dx)(lnf(x)))/(lnf(x)))=1×lnsinx+x×((cosx)/(sinx))+(((d/dx)(lnx))/(lnx))  (((1/(f(x)))f^( ′) (x))/(lnf(x)))=lnsinx+xcotx+((1/x)/(lnx))  ((f^( ′) (x))/(f(x)lnf(x)))=lnsinx+xcotx+(1/(xlnx))  f^( ′) (x)=f(x)lnf(x){lnsinx+xcotx+(1/(xlnx))}  f^′ (x)=x^(sin^x x) lnx^(sin^x x) (1/(xlnx))(xlnx{lnsinx+xcotx}+1)  f^′ (x)=((x^(sin^x x) (sin^x x)lnx(x(lnx){lnsinx+xcotx}+1))/(xlnx))  x,lnx>0  ∴f^′ (x)=x^(sin^x x−1) (sin^x x)(x(lnx){lnsinx+xcotx}+1)  If f^′ (x)=0   ⇒sin^x x=0⇒x=nπ,x∈N  f(nπ)=(nπ)^((sin{nπ})^(nπ) ) =(nπ)^0 =1    If g(x)=x touches f(x)=x^(sin^x x)   it is necessary that ∃x∈R∣f^′ (x)=g^′ (x)=1.
f(x)=xsinxx()Iff(x),x>0,takinglnonbothsidesof()lnf(x)=(sinxx)lnx()Again,iflnf(x),(sinxx)lnx>0,takinglnonbothsiddsof()ln(lnf(x))=ln{(sinxx)lnx}ln(lnf(x))=xlnsinx+ln(lnx)()Implicitlydifferentiating()w.r.txgivesddx(lnf(x))lnf(x)=1×lnsinx+x×cosxsinx+ddx(lnx)lnx1f(x)f(x)lnf(x)=lnsinx+xcotx+1/xlnxf(x)f(x)lnf(x)=lnsinx+xcotx+1xlnxf(x)=f(x)lnf(x){lnsinx+xcotx+1xlnx}f(x)=xsinxxlnxsinxx1xlnx(xlnx{lnsinx+xcotx}+1)f(x)=xsinxx(sinxx)lnx(x(lnx){lnsinx+xcotx}+1)xlnxx,lnx>0f(x)=xsinxx1(sinxx)(x(lnx){lnsinx+xcotx}+1)Iff(x)=0sinxx=0x=nπ,xNf(nπ)=(nπ)(sin{nπ})nπ=(nπ)0=1Ifg(x)=xtouchesf(x)=xsinxxitisnecessarythatxRf(x)=g(x)=1.
Commented by Yozzii last updated on 27/Dec/15
Commented by Yozzii last updated on 27/Dec/15
The above graphs are g^′ (x)=1  and y=f′(x).  We see that indeed ∃x∈R∣f^′ (x)=g^′ (x)=1  and that for such x they are in the   neighbourhood of x=nπ at which   f^′ (x)=0.
Theabovegraphsareg(x)=1andy=f(x).WeseethatindeedxRf(x)=g(x)=1andthatforsuchxtheyareintheneighbourhoodofx=nπatwhichf(x)=0.
Commented by Yozzii last updated on 27/Dec/15
No turning points of y=f(x) lie   on y=g(x) as a consequence of   the above graph showing g′(x)=f′(x)=1≠0  for g(x) touching f(x) near x=nπ.
Noturningpointsofy=f(x)lieony=g(x)asaconsequenceoftheabovegraphshowingg(x)=f(x)=10forg(x)touchingf(x)nearx=nπ.
Commented by Filup last updated on 27/Dec/15
This is amazing and complicated!  I don′t know implicite differentiation,  but this is awesome!!!
Thisisamazingandcomplicated!Idontknowimplicitedifferentiation,butthisisawesome!!!
Commented by Yozzii last updated on 27/Dec/15
This is why I′m glad we can use  diagrams now. Graphing is important.
ThisiswhyImgladwecanusediagramsnow.Graphingisimportant.

Leave a Reply

Your email address will not be published. Required fields are marked *