Menu Close

f-x-x-sinx-0-lt-x-lt-pi-2-find-f-x-




Question Number 69680 by 20190927 last updated on 26/Sep/19
f(x)=x^(sinx)   , 0<x<(π/2)   find f′(x)
f(x)=xsinx,0<x<π2findf(x)
Answered by MJS last updated on 26/Sep/19
(d/dx)[u^v ]=u^v (((u′v)/u)+v′ln u)  ⇒  f′(x)=x^(sin x) (((sin x)/x)+cos x ln x)
ddx[uv]=uv(uvu+vlnu)f(x)=xsinx(sinxx+cosxlnx)
Commented by 20190927 last updated on 26/Sep/19
thank you so much
thankyousomuch
Answered by Henri Boucatchou last updated on 26/Sep/19
f′(x) = (e^(sinxlnx) )′= (sinxlnx)′f(x)              = (cosxlnx+((sinx)/x))x^(sinx)
f(x)=(esinxlnx)=(sinxlnx)f(x)=(cosxlnx+sinxx)xsinx

Leave a Reply

Your email address will not be published. Required fields are marked *