Menu Close

f-x-xtan-2-x-find-one-primitive-of-f-x-




Question Number 132832 by mathocean1 last updated on 16/Feb/21
f(x)=xtan^2 x  find one primitive of f(x).
f(x)=xtan2xfindoneprimitiveoff(x).
Answered by Olaf last updated on 17/Feb/21
F(x) = ∫f(x)dx  F(x) = ∫xtan^2 xdx  F(x) = ∫[x(1+tan^2 x)−x]dx  F(x) = xtanx−∫tanxdx−(x^2 /2)  F(x) = xtanx+ln∣cosx∣−(x^2 /2)   (+C)
F(x)=f(x)dxF(x)=xtan2xdxF(x)=[x(1+tan2x)x]dxF(x)=xtanxtanxdxx22F(x)=xtanx+lncosxx22(+C)
Answered by EDWIN88 last updated on 16/Feb/21
F(x)=∫ x(sec^2 x−1)dx    = ∫ x d(tan x)−(1/2)x^2   = x tan x−∫ tan x dx −(1/2)x^2   = x tan x−(1/2)x^2 +ln ∣cos x∣ + C
F(x)=x(sec2x1)dx=xd(tanx)12x2=xtanxtanxdx12x2=xtanx12x2+lncosx+C

Leave a Reply

Your email address will not be published. Required fields are marked *