Menu Close

f-x-y-f-x-y-xy-f-x-y-x-2-y-2-f-x-y-y-x-100-y-100-f-0-0-f-1-4-




Question Number 1842 by 123456 last updated on 12/Oct/15
f(x,y)=f(x+y,xy)  f(x,y)=x,−2≤y≤2  f(x,y)=y,∣x∣≥100∨∣y∣≥100  f(0,0)=?  f(1,4)=?
$${f}\left({x},{y}\right)={f}\left({x}+{y},{xy}\right) \\ $$$${f}\left({x},{y}\right)={x},−\mathrm{2}\leqslant{y}\leqslant\mathrm{2} \\ $$$${f}\left({x},{y}\right)={y},\mid{x}\mid\geqslant\mathrm{100}\vee\mid{y}\mid\geqslant\mathrm{100} \\ $$$${f}\left(\mathrm{0},\mathrm{0}\right)=? \\ $$$${f}\left(\mathrm{1},\mathrm{4}\right)=? \\ $$
Commented by 123456 last updated on 12/Oct/15
(1,4)→(5,4)→(9,20)→(29,180)→...  (x,x)→(2x,x^2 )→(2x+x^2 ,2x^3 )→...
$$\left(\mathrm{1},\mathrm{4}\right)\rightarrow\left(\mathrm{5},\mathrm{4}\right)\rightarrow\left(\mathrm{9},\mathrm{20}\right)\rightarrow\left(\mathrm{29},\mathrm{180}\right)\rightarrow… \\ $$$$\left({x},{x}\right)\rightarrow\left(\mathrm{2}{x},{x}^{\mathrm{2}} \right)\rightarrow\left(\mathrm{2}{x}+{x}^{\mathrm{2}} ,\mathrm{2}{x}^{\mathrm{3}} \right)\rightarrow… \\ $$
Answered by Rasheed Soomro last updated on 13/Oct/15
 f(0,0)=0    [ ∵  f(x,y)=x,−2≤y≤2 and here x=0]  Since f(x,y)=f(x+y,xy)  Therefore f(1,4)=f(1+4,1.4)=f(5,4)  =f(9,20)=f(29,180) , here ∣y∣≥100   f(29,180)=180  [∵   f(x,y)=y,∣x∣≥100∨∣y∣≥100 ]  So,  f(1,4)=f(29,180)=180  Continueing further in this way we can also find   other values of f(1,4)  f(1,4)=f(29,180)=f(209,5220)=5220  f(1,4)=180,5220,...
$$\:{f}\left(\mathrm{0},\mathrm{0}\right)=\mathrm{0}\:\:\:\:\left[\:\because\:\:{f}\left({x},{y}\right)={x},−\mathrm{2}\leqslant{y}\leqslant\mathrm{2}\:{and}\:{here}\:{x}=\mathrm{0}\right] \\ $$$${Since}\:{f}\left({x},{y}\right)={f}\left({x}+{y},{xy}\right) \\ $$$${Therefore}\:{f}\left(\mathrm{1},\mathrm{4}\right)={f}\left(\mathrm{1}+\mathrm{4},\mathrm{1}.\mathrm{4}\right)={f}\left(\mathrm{5},\mathrm{4}\right) \\ $$$$={f}\left(\mathrm{9},\mathrm{20}\right)={f}\left(\mathrm{29},\mathrm{180}\right)\:,\:{here}\:\mid{y}\mid\geqslant\mathrm{100}\: \\ $$$${f}\left(\mathrm{29},\mathrm{180}\right)=\mathrm{180}\:\:\left[\because\:\:\:{f}\left({x},{y}\right)={y},\mid{x}\mid\geqslant\mathrm{100}\vee\mid{y}\mid\geqslant\mathrm{100}\:\right] \\ $$$${So}, \\ $$$${f}\left(\mathrm{1},\mathrm{4}\right)={f}\left(\mathrm{29},\mathrm{180}\right)=\mathrm{180} \\ $$$${Continueing}\:{further}\:{in}\:{this}\:{way}\:{we}\:{can}\:{also}\:{find}\: \\ $$$${other}\:{values}\:{of}\:{f}\left(\mathrm{1},\mathrm{4}\right) \\ $$$${f}\left(\mathrm{1},\mathrm{4}\right)={f}\left(\mathrm{29},\mathrm{180}\right)={f}\left(\mathrm{209},\mathrm{5220}\right)=\mathrm{5220} \\ $$$${f}\left(\mathrm{1},\mathrm{4}\right)=\mathrm{180},\mathrm{5220},… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *