Menu Close

f-xf-y-x-xy-f-x-f-R-R-f-x-




Question Number 3654 by prakash jain last updated on 17/Dec/15
f(xf(y)+x)=xy+f(x)  f:R→R  f(x)=?
f(xf(y)+x)=xy+f(x)f:RRf(x)=?
Commented by RasheedSindhi last updated on 18/Dec/15
f(xf(y)+x)=xy+f(x)....(i)  Let y=0  f(xf(0)+x)=x(0)+f(x)  f(x)=f( xf(0)+f(x) )........(ii)  f(0)=f( 0.f(0)+f(0))           f(0)=f( f(0) )  x⇋y in (i)  f(yf(x)+y)=xy+f(y).......(iii)  y=x in (i)  f( xf(x)+x )=x^2 +f(x)  f(x)=f( xf(x)+x )−x^2   f(1)=f( f(1)+1 )−1  f(1)+1=f( f(1)+1 )
f(xf(y)+x)=xy+f(x).(i)Lety=0f(xf(0)+x)=x(0)+f(x)f(x)=f(xf(0)+f(x))..(ii)f(0)=f(0.f(0)+f(0))f(0)=f(f(0))xyin(i)f(yf(x)+y)=xy+f(y).(iii)y=xin(i)f(xf(x)+x)=x2+f(x)f(x)=f(xf(x)+x)x2f(1)=f(f(1)+1)1f(1)+1=f(f(1)+1)
Commented by prakash jain last updated on 18/Dec/15
based on above  f(x)=x is one solution, are there any other  solutions?
basedonabovef(x)=xisonesolution,arethereanyothersolutions?
Commented by prakash jain last updated on 18/Dec/15
Let us say f(x)≠x and f(y)=0 for some y.  f(x)=xf^(−1) (y)+f(x)  f^(−1) (y)=0  so if f(x)≠x then either  f(x)≠0 for all x∈R or f(0)=0.
Letussayf(x)xandf(y)=0forsomey.f(x)=xf1(y)+f(x)f1(y)=0soiff(x)xtheneitherf(x)0forallxRorf(0)=0.

Leave a Reply

Your email address will not be published. Required fields are marked *