Menu Close

f-z-e-1-z-f-1-z-pi-z-sin-piz-f-z-z-2-z-1-2-f-z-0-z-




Question Number 2344 by 123456 last updated on 17/Nov/15
f(z)e^(1−z) =f(1−z)π^z sin (πz)  f(z)=z^2 ,ℜ(z)≥1/2  f(z)=0,z=??
f(z)e1z=f(1z)πzsin(πz)f(z)=z2,(z)1/2f(z)=0,z=??
Commented by Yozzi last updated on 17/Nov/15
f(z)=0⇒z^2 =0  Suppose z=a+bi ; a,b∈R  ⇒a^2 −b^2 +2iab=0  ⇒a^2 −b^2 =0⇒a=±b and ab=0⇒a=0∨b=0  ⇒ a=b=0 ⇒R(z)=0  But, R(z)≥1/2≠0  ∴ ∄z∈C with R(z)≥1/2 for f(z)=0  This is the case if one looks solely at f(z)=0  given that f(z)=z^2 .
f(z)=0z2=0Supposez=a+bi;a,bRa2b2+2iab=0a2b2=0a=±bandab=0a=0b=0a=b=0R(z)=0But,R(z)1/20zCwithR(z)1/2forf(z)=0Thisisthecaseifonelookssolelyatf(z)=0giventhatf(z)=z2.
Commented by Yozzi last updated on 17/Nov/15
If (z)=0, looking at the equation given,  ⇒f(1−z)π^z sin(πz)=0  ⇒f(1−z)=0 ∨ π^z =0 ∨ sin(πz)=0  π^z =e^(lnπ^z ) =e^(zlnπ) =e^((a+ib)lnπ) =e^(alnπ) e^(iblnπ)   a,π,e∈R⇒e^(alnπ) ≠0  ∴π^z =0⇒e^(iblnπ) =0  ∴cos(blnπ)+isin(blnπ)=0  ⇒cos(blnπ)=0 ∧ sin(blnπ)=0  ∴ blnπ=(((2n+1)π)/2),   blnπ=nπ  n∈Z  b=((2n+1)/(2lnπ))π   ,  b=((nπ)/(lnπ))  If  ((2n+1)/2)=n⇒2n=2n+1⇒0=1 (Contradiction)  ∴ ∄b∈R such that π^z =0⇒π^z ≠0 ∀z∈C.    If sin(πz)=0⇒ πz=nπ⇒z=n; n∈Z  ∴ a+bi=n⇒b=0⇒a=n.  ∵ R(z)≥1/2⇒ a≥1 ∴ z=a with a∈Z^+ .    If f(z)=z^2  ⇒f(1−z)=(1−z)^2   ∴ f(1−z)=0⇒(1−z)^2 =0⇒z=1
If(z)=0,lookingattheequationgiven,f(1z)πzsin(πz)=0f(1z)=0πz=0sin(πz)=0πz=elnπz=ezlnπ=e(a+ib)lnπ=ealnπeiblnπa,π,eRealnπ0πz=0eiblnπ=0cos(blnπ)+isin(blnπ)=0cos(blnπ)=0sin(blnπ)=0blnπ=(2n+1)π2,blnπ=nπnZb=2n+12lnππ,b=nπlnπIf2n+12=n2n=2n+10=1(Contradiction)bRsuchthatπz=0πz0zC.Ifsin(πz)=0πz=nπz=n;nZa+bi=nb=0a=n.R(z)1/2a1z=awithaZ+.Iff(z)=z2f(1z)=(1z)2f(1z)=0(1z)2=0z=1
Commented by RasheedAhmad last updated on 17/Nov/15
Excellent!
Excellent!
Commented by RasheedAhmad last updated on 17/Nov/15
f(z)e^(1−z) =f(1−z)π^z sin (πz)  z^2 e^(1−z) =f(1−z)π^z sin (πz)  If z=1,the equation isn′t satisfied!           1=0?
f(z)e1z=f(1z)πzsin(πz)z2e1z=f(1z)πzsin(πz)Ifz=1,theequationisntsatisfied!1=0?
Commented by Yozzi last updated on 17/Nov/15
Yup, certainly. It′s false for z=a, a∈Z^+  too.  Given the condition R(z)≥1/2  for f(z)=0, there are no solutions.  Perhaps one should look at e^(1−z) =0.
Yup,certainly.Itsfalseforz=a,aZ+too.GiventheconditionR(z)1/2forf(z)=0,therearenosolutions.Perhapsoneshouldlookate1z=0.
Commented by Yozzi last updated on 17/Nov/15
e^(1−z) =e×e^(−z) =e×e^(−a−bi) =e^(1−a) ×e^(−bi)   If e^(1−z) =0⇒e^(1−a) e^(−bi) =0.  a,e∈R⇒e^(1−a) ≠0 ⇒e^(−bi) =0  ⇒cosb−isinb=0  ⇒cotb−i=0  cotb=i which is false if b∈R.  ⇒e^(1−z) ≠0 ∀z∈C.
e1z=e×ez=e×eabi=e1a×ebiIfe1z=0e1aebi=0.a,eRe1a0ebi=0cosbisinb=0cotbi=0cotb=iwhichisfalseifbR.e1z0zC.
Commented by prakash jain last updated on 17/Nov/15
f(z)e^(1−z) =f(1−z)π^z sin (πz)  z=0⇒ℜ(z)≱1/2  f(z)e=f(1)×π×0=1×π×0=0⇒f(z)=0  So z=0 is a valid solution.
f(z)e1z=f(1z)πzsin(πz)z=0(z)1/2f(z)e=f(1)×π×0=1×π×0=0f(z)=0Soz=0isavalidsolution.
Commented by Yozzi last updated on 17/Nov/15
Yes.
Yes.
Answered by prakash jain last updated on 17/Nov/15
z=0⇎ℜ(z)≱1/2  f(0)e^(1−0) =f(1)∙π∙sin (0)  f(0)×e=1^2 ×π×0=0  General solution: z=−nπ, n∈N∪{0}  z=−nπ⇒ℜ(z)≱1/2⇒f(z)=0
z=0(z)1/2f(0)e10=f(1)πsin(0)f(0)×e=12×π×0=0Generalsolution:z=nπ,nN{0}z=nπ(z)1/2f(z)=0

Leave a Reply

Your email address will not be published. Required fields are marked *