Menu Close

factorise-p-x-1-x-x-2-x-3-x-5-inside-C-x-and-R-x-calculate-p-e-i-pi-5-and-p-cos-pi-5-




Question Number 67234 by prof Abdo imad last updated on 24/Aug/19
factorise p(x)=1+x+x^2  +x^3  +x^5   inside C[x] and R[x]  calculate p(e^(i(π/5)) ) and p(cos((π/5)))
factorisep(x)=1+x+x2+x3+x5insideC[x]andR[x]calculatep(eiπ5)andp(cos(π5))
Commented by mathmax by abdo last updated on 24/Aug/19
sorry p(x)=1+x+x^2  +x^3  +x^4
sorryp(x)=1+x+x2+x3+x4
Commented by mathmax by abdo last updated on 25/Aug/19
1)p(x)=0 ⇔ 1+x+x^2  +x^3  +x^4 =0  ⇔1−x^5 =0   and x ≠1   x^5 =1  let x =re^(iθ)       (e)⇒r^5 e^(i5θ) =e^(i(2kπ))  ⇒r=1 and 5θ=2kπ ⇒  θ_k =((2kπ)/5)  so the roots are z_k =e^(i(((2kπ)/5)))   with k∈[[1,4]]  p(x)=Π_(k=1) ^4 (x−z_k )=Π_(k=1) ^4 (x−e^(i((2kπ)/5)) ) =(x−e^(i((2π)/5)) )(x−e^(i((4π)/5)) )(x−e^(i((6π)/5)) )(x−e^(i((8π)/5)) )  but  e^(i((8π)/5))  =e^(i(2π−((2π)/5)))  =e^(−((i2π)/5))    and e^(i((6π)/5))  =e^(−i((4π)/5))  ⇒  p(x) =(x−e^(i((2π)/5)) )(x−e^(−i((2π)/5)) )(x−e^(i((4π)/5)) )(x−e^(−i((4π)/5)) )  =(x^2 −2Re(e^(i((2π)/5)) )x+1)(x^2 −2Re(e^(i((4π)/5)) )x+1)   isthe decomposition  inside C[x]  we have cos((π/5)) =((1+(√5))/4) ⇒cos(((2π)/5))=2cos^2 ((π/5))−1  =2(((1+(√5))/4))^2 −1 =(1/8)(6+2(√5))−1 =((6+2(√5)−8)/8) =((−2+2(√5))/8) =(((√5)−1)/4)  cos(((4π)/5)) =cos(π−(π/5)) =−cos((π/5)) ⇒  p(x) =(x^2 −(((√5)−1)/2)x +1)(x^2 +(((√5)−1)/2)x+1)
1)p(x)=01+x+x2+x3+x4=01x5=0andx1x5=1letx=reiθ(e)r5ei5θ=ei(2kπ)r=1and5θ=2kπθk=2kπ5sotherootsarezk=ei(2kπ5)withk[[1,4]]p(x)=k=14(xzk)=k=14(xei2kπ5)=(xei2π5)(xei4π5)(xei6π5)(xei8π5)butei8π5=ei(2π2π5)=ei2π5andei6π5=ei4π5p(x)=(xei2π5)(xei2π5)(xei4π5)(xei4π5)=(x22Re(ei2π5)x+1)(x22Re(ei4π5)x+1)isthedecompositioninsideC[x]wehavecos(π5)=1+54cos(2π5)=2cos2(π5)1=2(1+54)21=18(6+25)1=6+2588=2+258=514cos(4π5)=cos(ππ5)=cos(π5)p(x)=(x2512x+1)(x2+512x+1)
Commented by mathmax by abdo last updated on 25/Aug/19
we have for x≠1   p(x) =((1−x^5 )/(1−x)) ⇒ p(e^(i(π/5)) ) =((1−(e^((iπ)/5) )^5 )/(1−e^(i(π/5)) ))  =(2/(1−e^((iπ)/5) ))  also we have p(cos((π/5))) =((1−cos^5 ((π/5)))/(1−cos((π/5))))  =((1−(((1+(√5))/4))^5 )/(1−((1+(√5))/4)))
wehaveforx1p(x)=1x51xp(eiπ5)=1(eiπ5)51eiπ5=21eiπ5alsowehavep(cos(π5))=1cos5(π5)1cos(π5)=1(1+54)511+54
Answered by mind is power last updated on 24/Aug/19
p(x)=1+x+x^2 +x^3 +x^4 ?
p(x)=1+x+x2+x3+x4?
Answered by MJS last updated on 25/Aug/19
(x^4 +x^3 +x^2 +x+1)(x−1)=x^5 −1  x^5 =1  x_0 =1  x_1 =−((1−(√5))/4)+((√(10+2(√5)))/4)i  x_2 =−((1+(√5))/4)+((√(10−2(√5)))/4)i  x_3 =−((1+(√5))/4)−((√(10−2(√5)))/4)i  x_4 =−((1−(√5))/4)−((√(10+2(√5)))/4)i  ⇒  x^4 +x^3 +x^2 +x+1=  =(x^2 +((1−(√5))/2)x+1)(x^2 +((1+(√5))/2)x+1)=  =(x+((1−(√5))/4)−((√(10+2(√5)))/4)i)(x+((1−(√5))/4)+((√(10+2(√5)))/4)i)(x+((1+(√5))/4)−((√(10−2(√5)))/4)i)(x+((1+(√5))/4)+((√(10−2(√5)))/4)i)  p(e^(i(π/5)) )=1+(√(5+2(√5)))i  p(cos (π/5))=((67)/(32))+((19(√5))/(32))
(x4+x3+x2+x+1)(x1)=x51x5=1x0=1x1=154+10+254ix2=1+54+10254ix3=1+5410254ix4=15410+254ix4+x3+x2+x+1==(x2+152x+1)(x2+1+52x+1)==(x+15410+254i)(x+154+10+254i)(x+1+5410254i)(x+1+54+10254i)p(eiπ5)=1+5+25ip(cosπ5)=6732+19532
Commented by mathmax by abdo last updated on 25/Aug/19
thanks sir.
thankssir.

Leave a Reply

Your email address will not be published. Required fields are marked *