Menu Close

Factorize-2-1-x-3-x-3-Stepwise-process-is-required-




Question Number 2134 by Rasheed Soomro last updated on 04/Nov/15
Factorize  −2+(1/x^3 )+x^3   (Stepwise process is required)
Factorize2+1x3+x3(Stepwiseprocessisrequired)
Answered by sudhanshur last updated on 04/Nov/15
−2+(1/x^3 )+x^3   =((−2x^3 +1+x^6 )/x^3 )=(((x^3 −1)^2 )/x^3 )  =(((x−1)^2 (x^2 +x+1)^2 )/x^3 )
2+1x3+x3=2x3+1+x6x3=(x31)2x3=(x1)2(x2+x+1)2x3
Commented by Rasheed Soomro last updated on 04/Nov/15
A new approach, I didn′t think of.In factor form more  suitably can be written:  ((1/x))^3 (x−1)^2 (x^2 +x+1)^2  .
Anewapproach,Ididntthinkof.Infactorformmoresuitablycanbewritten:(1x)3(x1)2(x2+x+1)2.
Answered by Rasheed Soomro last updated on 05/Nov/15
−2+(1/x^3 )+x^3   =1+(1/x^3 )+x^3 −3  a^3 +b^3 +c^3 −3abc                      =(a+b+c)(a^2 +b^2 +c^2 −ab−bc−ca)  =(1)^3 +((1/x))^3 +(x)^3 −3(1)((1/x))(x)               =(1+(1/x)+x)[(1)^2 +((1/x))^2 +(x)^2 −(1)((1/x))−((1/x))(x)−(x)(1)]               =(x+(1/x)+1)(x^2 +(1/x^2 )+1^(×) −x−(1/x)−1^(×) )               =(x+(1/x)+1)(x^2 +(1/x^2 )−x−(1/x))  Factors of x^2 +(1/x^2 )−x−(1/x) suggested by sudhanshur               =(x+(1/x)+1)(x^2 −x+(1/x^2 )−(1/x))               =(x+(1/x)+1)[x(x−1)−((x−1)/x^2 )]               =(x+(1/x)+1)(x−1)(x−(1/x^2 ))
2+1x3+x3=1+1x3+x33a3+b3+c33abc=(a+b+c)(a2+b2+c2abbcca)=(1)3+(1x)3+(x)33(1)(1x)(x)=(1+1x+x)[(1)2+(1x)2+(x)2(1)(1x)(1x)(x)(x)(1)]=(x+1x+1)(x2+1x2+1×x1x1×)=(x+1x+1)(x2+1x2x1x)Factorsofx2+1x2x1xsuggestedbysudhanshur=(x+1x+1)(x2x+1x21x)=(x+1x+1)[x(x1)x1x2]=(x+1x+1)(x1)(x1x2)
Commented by sudhanshur last updated on 04/Nov/15
(x^2 +(1/x^2 )−x−(1/x))=x^2 −x−((x−1)/x^2 )=(x−1)(x−(1/x^2 ))
(x2+1x2x1x)=x2xx1x2=(x1)(x1x2)
Commented by Rasheed Soomro last updated on 05/Nov/15
Good!
Good!

Leave a Reply

Your email address will not be published. Required fields are marked *