Menu Close

factorize-inside-R-X-1-X-5-1-2-X-6-1-




Question Number 73051 by mathmax by abdo last updated on 05/Nov/19
factorize inside R[X]  1)X^5 −1    2)X^6  +1
factorizeinsideR[X]1)X512)X6+1
Commented by mathmax by abdo last updated on 06/Nov/19
1) let decompose inside C[x]  x^5 −1  x=r e^(iθ)    so x^5 −1 =0 ⇒r^5  e^(i5θ)  =e^(i2kπ)  ⇒r=1 and θ =((2kπ)/5)  so the roots areZ_k =e^(i((2kπ)/5))   with k∈[[0,4]]  ⇒x^5 −1  =Π_(k=0) ^4 (x−Z_k )=(x−Z_0 )(x−Z_1 )(x−Z_2 )(x−Z_3 )(x−Z_4 )  Z_0 =1  Z_1 =e^((i2π)/5)   , Z_2 =e^((i4π)/5)  , Z_3 =e^((i6π)/5)  =Z_2 ^−    ,Z_4 =e^((i8π)/5)  =Z_1 ^−  ⇒  x^5 −1 =(x−1)(x−Z_1 )(x−Z_1 ^− )(x−Z_2 )(x−Z_2 ^− )  =(x−1)(x^2  −2Re(Z_1 )x +1)(x^2 −2Re(Z_2 )x +1)  =(x−1)(x^2  −2cos(((2π)/5))x+1)(x^2 −2 cos(((4π)/5))x +1)  we have cos((π/5))=((1+(√5))/4) and cos(((2π)/5))=2cos^2 ((π/5))−1  =2(((1+(√5))^2 )/(16)) −1 =((2(6+2(√5))−16)/6) =((12+4(√5)−16)/(16)) =((−4+4(√5))/(16)) =(((√5)−1)/4)  cos(((4π)/5)) =2cos^2 (((2π)/5))−1 =2 ((((√5)−1)^2 )/(16)) −1=((2(6−2(√5))−16)/(16))  =((12−4(√5)−16)/(16)) =((−4−4(√5))/(16)) =−((1+(√5))/4) ⇒  x^5 −1 =(x−1)(x^2 −(((√5)−1)/2)x +1)(x^2 +((1+(√5))/2)x +1)
1)letdecomposeinsideC[x]x51x=reiθsox51=0r5ei5θ=ei2kπr=1andθ=2kπ5sotherootsareZk=ei2kπ5withk[[0,4]]x51=k=04(xZk)=(xZ0)(xZ1)(xZ2)(xZ3)(xZ4)Z0=1Z1=ei2π5,Z2=ei4π5,Z3=ei6π5=Z2,Z4=ei8π5=Z1x51=(x1)(xZ1)(xZ1)(xZ2)(xZ2)=(x1)(x22Re(Z1)x+1)(x22Re(Z2)x+1)=(x1)(x22cos(2π5)x+1)(x22cos(4π5)x+1)wehavecos(π5)=1+54andcos(2π5)=2cos2(π5)1=2(1+5)2161=2(6+25)166=12+451616=4+4516=514cos(4π5)=2cos2(2π5)1=2(51)2161=2(625)1616=12451616=44516=1+54x51=(x1)(x2512x+1)(x2+1+52x+1)

Leave a Reply

Your email address will not be published. Required fields are marked *