Menu Close

find-0-1-1-x-4-dx-




Question Number 75888 by abdomathmax last updated on 19/Dec/19
find ∫_0 ^1 (√(1+x^4 ))dx
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$
Commented by 21042004 last updated on 20/Dec/19
this equation is so long  (((√2)+2((−1))^(1/4) F(1−(i/(arcsinh(((−1))^(1/4) ))))+2((−1))^(1/4) F(i∙arcsinh^(−1) (0)∣−1))/3)
$$\mathrm{this}\:\mathrm{equation}\:\mathrm{is}\:\mathrm{so}\:\mathrm{long} \\ $$$$\frac{\sqrt{\mathrm{2}}+\mathrm{2}\sqrt[{\mathrm{4}}]{−\mathrm{1}}\mathrm{F}\left(\mathrm{1}−\frac{{i}}{\mathrm{arcsinh}\left(\sqrt[{\mathrm{4}}]{−\mathrm{1}}\right)}\right)+\mathrm{2}\sqrt[{\mathrm{4}}]{−\mathrm{1}}{F}\left({i}\centerdot\mathrm{arcsinh}^{−\mathrm{1}} \left(\mathrm{0}\right)\mid−\mathrm{1}\right)}{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *