Menu Close

find-0-1-x-3-3-x-2-x-2-dx-




Question Number 73478 by abdomathmax last updated on 13/Nov/19
find ∫_0 ^1      ((x^3 −3)/( (√(x^2 −x +2))))dx
find01x33x2x+2dx
Answered by MJS last updated on 13/Nov/19
∫((x^3 −3)/( (√(x^3 −x+2))))dx=∫((x^3 −3)/( (√((x−(1/2))^2 +(7/4)))))dx=       [t=((2x−1)/( (√7))) → dx=((√7)/2)dt]  =(1/8)∫((7(√7)t^3 +21t^2 +3(√7)t−23)/( (√(t^2 +1))))dt=       [t=sinh ln u =((u^2 −1)/(2u)) ⇒ u=t+(√(t^2 +1)) → dt=((√(t^2 +1))/(t+(√(t^2 +1))))du=((u^2 +1)/(2u^2 ))du]  =(1/(64))∫((7(√7)u^6 +42u^5 −9(√7)u^4 −268u^3 +9(√7)u^2 +42u−7(√7))/u^4 )du  and it′s easy to solve this
x33x3x+2dx=x33(x12)2+74dx=[t=2x17dx=72dt]=1877t3+21t2+37t23t2+1dt=[t=sinhlnu=u212uu=t+t2+1dt=t2+1t+t2+1du=u2+12u2du]=16477u6+42u597u4268u3+97u2+42u77u4duanditseasytosolvethis
Commented by abdomathmax last updated on 17/Nov/19
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *