Menu Close

find-0-2-x-3-2-x-dx-




Question Number 66340 by mathmax by abdo last updated on 12/Aug/19
find  ∫_0 ^2 (√(x^3 (2−x)))dx
find02x3(2x)dx
Commented by mathmax by abdo last updated on 15/Aug/19
let I =∫_0 ^2 (√(x^3 (2−x)))dx ⇒ I =∫_0 ^2 x(√(x(2−x)))dx  =∫_0 ^2 x(√(−x^2 +2x))dx   we have −x^2  +2x =−(x^2 −2x)  =−(x^2 −2x+1−1) =−(x−1)^2  +1 ⇒I =∫_0 ^2 x(√(1−(x−1)^2 ))dx  we use the changement x−1=sint ⇒  I = ∫_(−(π/2)) ^(π/2)  (1+sint)cost(cost)dt =∫_(−(π/2)) ^(π/2) cos^2 t dt +∫_(−(π/2)) ^(π/2) sint cos^2 tdt  =∫_(−(π/2)) ^(π/2) ((1+cos(2t))/2)dt   +0  (t→sint cos^2 t is odd)  =(π/2) +(1/4)[sin(2t)]_(−(π/2)) ^(π/2)  =(π/2)+0 ⇒ I =(π/2)
letI=02x3(2x)dxI=02xx(2x)dx=02xx2+2xdxwehavex2+2x=(x22x)=(x22x+11)=(x1)2+1I=02x1(x1)2dxweusethechangementx1=sintI=π2π2(1+sint)cost(cost)dt=π2π2cos2tdt+π2π2sintcos2tdt=π2π21+cos(2t)2dt+0(tsintcos2tisodd)=π2+14[sin(2t)]π2π2=π2+0I=π2

Leave a Reply

Your email address will not be published. Required fields are marked *