Menu Close

find-0-2pi-dx-1-cosx-3sinx-2-




Question Number 137055 by mathmax by abdo last updated on 29/Mar/21
find ∫_0 ^(2π)  (dx/((1+cosx +3sinx)^2 ))
find02πdx(1+cosx+3sinx)2
Commented by MJS_new last updated on 30/Mar/21
0≤(1+cos x +3sin x)^2 ≤11+2(√(10))  ⇒  ((11−2(√(10)))/(81))≤(1/((1+cos x +3sin x)^2 ))≤+∞  ⇒  integral diverges
0(1+cosx+3sinx)211+21011210811(1+cosx+3sinx)2+integraldiverges
Answered by Dwaipayan Shikari last updated on 30/Mar/21
∫_0 ^(2π) (dx/((2cos^2 (x/2)+6sin(x/2)cos(x/2))))  =(1/4)∫((sec^2 (x/2))/((cos(x/2)+3sin(x/2))^2 ))dx=(1/4)∫((sec^4 (x/2))/((1+3tan(x/2))^2 ))dx  =(1/2)∫((sec^4 u)/((1+3tanu)^2 ))du=(1/2)∫(((1+t^2 ))/((1+3t)^2 ))dt  =(1/(18))∫(dt/((t+(1/3))^2 ))+(1/(18))∫((t^2 +((2t)/3)+(1/9))/((t+(1/3))^2 ))−(1/(18))∫((((2t)/3)+(1/9))/((t+(1/3))^2 ))dt  =−(1/(18)).(1/(t+(1/3)))+(1/(18))−(1/(27))log(t+(1/3))+(1/(162(t+(1/3))))−(1/(81(t+(1/3))))  =[(1/(tan((x/2))))((1/(162))−(1/(18))−(1/(81)))+(1/(18))−(1/(27))log(tan(x/2)+(1/3))]_0 ^(2π)   Diverges
02πdx(2cos2x2+6sinx2cosx2)=14sec2x2(cosx2+3sinx2)2dx=14sec4x2(1+3tanx2)2dx=12sec4u(1+3tanu)2du=12(1+t2)(1+3t)2dt=118dt(t+13)2+118t2+2t3+19(t+13)21182t3+19(t+13)2dt=118.1t+13+118127log(t+13)+1162(t+13)181(t+13)=[1tan(x2)(1162118181)+118127log(tanx2+13)]02πDiverges

Leave a Reply

Your email address will not be published. Required fields are marked *