find-0-2pi-dx-1-cosx-3sinx-2- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 137055 by mathmax by abdo last updated on 29/Mar/21 find∫02πdx(1+cosx+3sinx)2 Commented by MJS_new last updated on 30/Mar/21 0⩽(1+cosx+3sinx)2⩽11+210⇒11−21081⩽1(1+cosx+3sinx)2⩽+∞⇒integraldiverges Answered by Dwaipayan Shikari last updated on 30/Mar/21 ∫02πdx(2cos2x2+6sinx2cosx2)=14∫sec2x2(cosx2+3sinx2)2dx=14∫sec4x2(1+3tanx2)2dx=12∫sec4u(1+3tanu)2du=12∫(1+t2)(1+3t)2dt=118∫dt(t+13)2+118∫t2+2t3+19(t+13)2−118∫2t3+19(t+13)2dt=−118.1t+13+118−127log(t+13)+1162(t+13)−181(t+13)=[1tan(x2)(1162−118−181)+118−127log(tanx2+13)]02πDiverges Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 5y-1-y-2-3-2-please-solve-the-differtial-equation-Next Next post: Express-28-as-continued-fraction- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.