Menu Close

find-0-e-ax-sin-bx-dx-a-gt-0-and-b-gt-0-




Question Number 136943 by Mathspace last updated on 28/Mar/21
find ∫_0 ^∞  e^(−ax) ∣sin(bx)∣ dx  a>0 and b>0
find0eaxsin(bx)dxa>0andb>0
Answered by mathmax by abdo last updated on 30/Mar/21
Φ=∫_0 ^∞  e^(−ax) ∣sin(bx)∣dx ⇒Φ=_(bx=t)  ∫_0 ^∞  e^(−(a/b)t) ∣sint∣(dt/b)  =(1/b) Σ_(n=0) ^∞  ∫_(nπ) ^((n+1)π)  e^(−((at)/b)) ∣sint∣ dt  =_(t=nπ +y)   (1/b)Σ_(n=0) ^∞  ∫^π _0  e^(−(a/b)(nπ+y)) ∣sin(nπ+y)∣ dy  =(1/b)Σ_(n=0) ^∞ e^(−((naπ)/b))  ∫_0 ^π   e^(−((ay)/b))  siny dy  let (a/b)=λ ⇒  Φ=(1/b) Σ_(n=0) ^∞  e^(−nλπ)  .∫_0 ^π  e^(−λy)  siny dy we have  ∫_0 ^π  e^(−λy)  siny dy =Im(∫_0 ^π  e^(−λy+iy) dy) and  ∫_0 ^π  e^((−λ+i)y)   dy =[(1/(−λ+i))e^((−λ+i)y) ]_0 ^π  =((−1)/(λ−i)){e^((−λ+i)π) −1}  =((−(λ+i))/(1+λ^2 )){− e^(−λπ) −1} =(((λ+i)(e^(−λπ) +1))/(1+λ^2 ))  ⇒∫_0 ^π  e^(−λy)  siny dy =((1+e^(−λπ) )/(1+λ^2 )) ⇒  Φ =((1+e^(−λπ) )/(b(1+λ^2 )))Σ_(n=0) ^∞  (e^(−λπ) )^n  =((1+e^(−λπ) )/(b(1+λ^2 )))×(1/(1−e^(−λπ) )) ⇒  Φ =((1+e^(−((aπ)/b)) )/(b(1−e^(−((aπ)/b)) )(1+(a^2 /b^2 )))) ⇒Φ=(b/(a^2 +b^2 ))×((1+e^(−((aπ)/b)) )/(1−e^(−((aπ)/b)) ))
Φ=0eaxsin(bx)dxΦ=bx=t0eabtsintdtb=1bn=0nπ(n+1)πeatbsintdt=t=nπ+y1bn=00πeab(nπ+y)sin(nπ+y)dy=1bn=0enaπb0πeaybsinydyletab=λΦ=1bn=0enλπ.0πeλysinydywehave0πeλysinydy=Im(0πeλy+iydy)and0πe(λ+i)ydy=[1λ+ie(λ+i)y]0π=1λi{e(λ+i)π1}=(λ+i)1+λ2{eλπ1}=(λ+i)(eλπ+1)1+λ20πeλysinydy=1+eλπ1+λ2Φ=1+eλπb(1+λ2)n=0(eλπ)n=1+eλπb(1+λ2)×11eλπΦ=1+eaπbb(1eaπb)(1+a2b2)Φ=ba2+b2×1+eaπb1eaπb

Leave a Reply

Your email address will not be published. Required fields are marked *