Menu Close

find-0-e-t-1-x-2-1-x-2-dx-with-t-0-




Question Number 140977 by Mathspace last updated on 14/May/21
find ∫_0 ^∞  (e^(−t(1+x^2 )) /(1+x^2 ))dx  with t≥0
find0et(1+x2)1+x2dxwitht0
Answered by mathmax by abdo last updated on 14/May/21
let f(t)=∫_0 ^∞  (e^(−(1+x^2 )t) /(1+x^2 ))dx ⇒f^′ (t)=−∫_0 ^∞  e^(−(1+x^2 )t)  dx  =−e^(−t)  ∫_0 ^∞  e^(−tx^2 ) dx =_(u=(√t)x)  −e^(−t) ∫_0 ^∞  e^(−u^2 ) (du/( (√t)))  =−(e^(−t) /( (√t))).((√π)/2) =−((√π)/2) (e^(−t) /( (√t))) ⇒f(t)=−((√π)/2)∫_0 ^t  (e^(−u) /( (√u)))du +k  f(0)=(π/2) =k ⇒f(t)=(π/2)−((√π)/2)∫_0 ^t  (e^(−u) /( (√u)))du ((√u)=x)  =(π/2)−((√π)/2)∫_0 ^(√t)    (e^(−x^2 ) /x)(2x)dx =(π/2)−(√π)∫_0 ^(√t)  e^(−x^2 ) dx ⇒  f(t)=(π/2)−(√π)∫_0 ^(√t)  e^(−x^2 ) dx
letf(t)=0e(1+x2)t1+x2dxf(t)=0e(1+x2)tdx=et0etx2dx=u=txet0eu2dut=ett.π2=π2ettf(t)=π20teuudu+kf(0)=π2=kf(t)=π2π20teuudu(u=x)=π2π20tex2x(2x)dx=π2π0tex2dxf(t)=π2π0tex2dx
Answered by qaz last updated on 14/May/21
∫_0 ^∞ (e^(−t(1+x^2 )) /(1+x^2 ))dx  =−∫_0 ^t dt∫_0 ^∞ e^(−t(1+x^2 )) dx+(π/2)  =−∫_0 ^t e^(−t) dt∫_0 ^∞ e^(−tx^2 ) dx+(π/2)  =−∫_0 ^t e^(−t) ((Γ((1/2)))/(2t^(1/2) ))dt+(π/2)  =−((√π)/2)∫_0 ^t t^(−(1/2)) e^(−t) dt+(π/2)  =(π/2)[1−erf(t^2 )]
0et(1+x2)1+x2dx=0tdt0et(1+x2)dx+π2=0tetdt0etx2dx+π2=0tetΓ(12)2t12dt+π2=π20tt12etdt+π2=π2[1erf(t2)]

Leave a Reply

Your email address will not be published. Required fields are marked *