Menu Close

find-0-e-x-2-3-x-2-2-dx-




Question Number 142990 by mathmax by abdo last updated on 08/Jun/21
find ∫_0 ^∞  (e^(−x^2 ) /((3+x^2 )^2 ))dx
find0ex2(3+x2)2dx
Answered by qaz last updated on 08/Jun/21
∫_0 ^∞ (e^(−x^2 ) /((3+x^2 )^2 ))dx  =∫_0 ^∞ e^(−x^2 ) ∫_0 ^∞ ue^(−u(3+x^2 )) dudx  =∫_0 ^∞ ue^(−3u) du∫_0 ^∞ e^(−(u+1)x^2 ) dx  =∫_0 ^∞ ue^(−3u) ((Γ((1/2)))/(2(u+1)^(1/2) ))du  =((√π)/2)∫_0 ^∞ ((ue^(−3u) )/( (√(u+1))))du  =((e^3 (√π))/2)∫_1 ^∞ (((u−1)e^(−3u) )/( (√u)))du  =((e^3 (√π))/2)(∫_1 ^∞ (√u)e^(−3u) du−∫_1 ^∞ (e^(−3u) /( (√u)))du)  =((e^3 (√π))/2)(−(1/3)(√u)e^(−3u) ∣_1 ^∞ +(1/3)∫_1 ^∞ (e^(−3u) /(2(√u)))du−∫_1 ^∞ (e^(−3u) /( (√u)))du)  =((e^3 (√π))/2)((1/3)e^(−3) −(5/6)∫_1 ^∞ (e^(−3u) /( (√u)))du)  =((e^3 (√π))/2)((1/3)e^(−3) −(5/(6(√3)))∫_3 ^∞ (e^(−u) /( (√u)))du)  ==((e^3 (√π))/2)((1/3)e^(−3) −(5/( 3(√3)))∫_(√3) ^∞ e^(−v^2 ) dv)  =((√π)/6)−((5(√3)πe^3 )/(36))erfc((√3))
0ex2(3+x2)2dx=0ex20ueu(3+x2)dudx=0ue3udu0e(u+1)x2dx=0ue3uΓ(12)2(u+1)12du=π20ue3uu+1du=e3π21(u1)e3uudu=e3π2(1ue3udu1e3uudu)=e3π2(13ue3u1+131e3u2udu1e3uudu)=e3π2(13e3561e3uudu)=e3π2(13e35633euudu)==e3π2(13e35333ev2dv)=π653πe336erfc(3)
Commented by qaz last updated on 08/Jun/21
erf(x)=(2/( (√π)))∫_0 ^x e^(−t^2 ) dt  erfc(x)=1−erf(x)=(2/( (√π)))∫_x ^∞ e^(−t^2 ) dt
erf(x)=2π0xet2dterfc(x)=1erf(x)=2πxet2dt
Commented by mathmax by abdo last updated on 09/Jun/21
thank you sir.
thankyousir.
Answered by mathmax by abdo last updated on 09/Jun/21
parametric method let f(a)=∫_0 ^∞  (e^(−x^2 ) /(x^2  +a^2 )) ⇒f^′ (a)=−2a∫_0 ^∞  (e^(−x^2 ) /((x^2  +a^2 )^2 ))  ⇒f^′ ((√3))=−2(√3)∫_0 ^∞  (e^(−x^2 ) /((x^2  +3)^2 )) ⇒∫_0 ^∞  (e^(−x^2 ) /((x^2  +3)^2 ))dx=−(1/(2(√3)))f^′ ((√3))  f(a) =∫_0 ^∞ (∫_0 ^∞  e^(−t(x^2 +a^2 )) dt)e^(−x^2 ) dx  =∫_0 ^∞  (∫_0 ^∞  e^(−(t+1)x^2 ) dx)e^(−ta^2 ) dt  but  ∫_0 ^∞  e^(−(t+1)x^2 ) dx =_((√(t+1))x=u)   ∫_0 ^∞  e^(−u^2 ) (du/( (√(t+1)))) =((√π)/(2(√(t+1)))) ⇒  f(a)=((√π)/2)∫_0 ^∞  (e^(−a^2 t) /( (√(t+1))))dt  but  ∫_0 ^∞   (e^(−a^2 t) /( (√(t+1))))dt =_((√(t+1))=z)   ∫_1 ^∞  e^(−a^2 (z^2 −1)) ×(1/z)(2z)dz  =2e^a^2  ∫_1 ^∞  e^(−a^2 z^2 ) dz =_(az=α)  2e^a^2  ∫_1 ^∞  e^(−α^2 ) (dα/a)  =(2/a)e^a^2    ∫_1 ^∞  e^(−α^2 ) dα let k_0 =∫_1 ^∞  e^(−α^2 ) dα ⇒  f(a)=((√π)/2)((2k_0 )/a)e^a^2    =((k_0 (√π))/a)e^a^2   ⇒  f^′ (a)=k_0 (√π){−(1/a^2 )e^a^2  +((2a)/a)e^a^2  } =k_0 (√π){2e^a^2  −(1/a^2 )e^a^2  }  =k_0 (√π)(2−(1/a^2 ))e^a^2   ⇒f^′ ((√3))=k_0 (√π)(2−(1/3))e^3  ⇒  ∫_0 ^∞   (e^(−x^2 ) /((x^2  +3)^2 ))dx =−(1/(2(√3))).k_0 (√π).(5/3)e^3  =−k_0 (√π).(5/(6(√3))) e^3
parametricmethodletf(a)=0ex2x2+a2f(a)=2a0ex2(x2+a2)2f(3)=230ex2(x2+3)20ex2(x2+3)2dx=123f(3)f(a)=0(0et(x2+a2)dt)ex2dx=0(0e(t+1)x2dx)eta2dtbut0e(t+1)x2dx=t+1x=u0eu2dut+1=π2t+1f(a)=π20ea2tt+1dtbut0ea2tt+1dt=t+1=z1ea2(z21)×1z(2z)dz=2ea21ea2z2dz=az=α2ea21eα2dαa=2aea21eα2dαletk0=1eα2dαf(a)=π22k0aea2=k0πaea2f(a)=k0π{1a2ea2+2aaea2}=k0π{2ea21a2ea2}=k0π(21a2)ea2f(3)=k0π(213)e30ex2(x2+3)2dx=123.k0π.53e3=k0π.563e3

Leave a Reply

Your email address will not be published. Required fields are marked *