Question Number 66150 by mathmax by abdo last updated on 09/Aug/19
$${find}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{3}} } {sin}\left({x}^{\mathrm{3}} \right){dx}\: \\ $$
Commented by mathmax by abdo last updated on 11/Aug/19
$${let}\:{A}\:=\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{3}} } {sin}\left({x}^{\mathrm{3}} \right){dx}\:\Rightarrow{A}\:=−{Im}\left(\int_{\mathrm{0}} ^{\infty} {e}^{−{x}^{\mathrm{3}} } {e}^{−{ix}^{\mathrm{3}} } {dx}\right) \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{3}} −{ix}^{\mathrm{3}} } {dx}\:=\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left(\mathrm{1}+{i}\right){x}^{\mathrm{3}} } {dx}\:\:\:{changement}\:\left(\mathrm{1}+{i}\right){x}^{\mathrm{3}} ={t}\:{give} \\ $$$${x}^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{1}+{i}}{t}\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \:{t}\:\Rightarrow{x}\:=\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} {t}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:=\mathrm{2}^{−\frac{\mathrm{1}}{\mathrm{6}}} \:{e}^{−\frac{{i}\pi}{\mathrm{12}}} \:{t}^{\frac{\mathrm{1}}{\mathrm{3}}} \:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left(\mathrm{1}+{i}\right){x}^{\mathrm{3}} } {dx}\:=\:\mathrm{2}^{−\frac{\mathrm{1}}{\mathrm{6}}} \:{e}^{−\frac{{i}\pi}{\mathrm{112}}} \int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\mathrm{3}}\:{t}^{\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{1}} \:{e}^{−{t}} \:{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}\left(^{\mathrm{6}} \sqrt{\mathrm{2}}\right)}\:{e}^{−\frac{{i}\pi}{\mathrm{12}}} \:.\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:=\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)}{\mathrm{3}\left(^{\mathrm{6}} \sqrt{\mathrm{2}}\right)}\left\{\:{cos}\left(\frac{\pi}{\mathrm{12}}\right)−{isin}\left(\frac{\pi}{\mathrm{12}}\right)\right\}\:\Rightarrow \\ $$$${A}\:=\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)}{\mathrm{3}\left(^{\mathrm{6}} \sqrt{\mathrm{2}}\right)}\:{sin}\left(\frac{\pi}{\mathrm{12}}\right)\:\:\:{we}\:{have}\:{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{12}}\right)=\frac{\mathrm{1}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}{\mathrm{2}}\:=\frac{\mathrm{2}−\sqrt{\mathrm{3}}}{\mathrm{4}}\:\Rightarrow \\ $$$${sin}\left(\frac{\pi}{\mathrm{12}}\right)=\frac{\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}}{\mathrm{2}}\:\:\Rightarrow\:{A}\:=\frac{\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}}{\mathrm{6}\left(^{\mathrm{6}} \sqrt{\mathrm{2}}\right)}×\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right). \\ $$