find-0-pi-2-Log-cosx-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 74995 by vishalbhardwaj last updated on 05/Dec/19 find∫0π2Logcosxdx Commented by mathmax by abdo last updated on 06/Dec/19 letI=∫0π2ln(cosx)dxandJ=∫0π2ln(sinx)dxwehsveJ=x=π2−t∫π20ln(cost)(−dt)=∫0π2ln(cost)dt=I⇒2I=I+J=∫0π2ln(cosxsinx)dx=∫0π2ln(12sin(2x))dx=−π2ln(2)+∫0π2ln(sin(2x))dxbut∫0π2ln(sin(2x))dx=2x=t12∫0πln(sint)dt=12∫0π2ln(sint)dt+12∫π2πln(sint)dt∫π2πln(sint)dt=x=π2+u∫0π2ln(cosu)du⇒2I=−π2ln(2)+I⇒I=−π2ln(2)wehaveprovedthat∫0π2ln(cosx)dx=∫0π2ln(sinx)dx=−π2ln(2). Answered by mind is power last updated on 05/Dec/19 ∫0π2log(cos(x))dx=∫0π2log(sin(x))dx,∴x→π2−x∴∫0π2log(sin(2x))dx=∫0πlog(2sin(x)cos(x))=πlog(2)+∫0π2log(sin(x))dx+∫0π2log(cos(x))dx=πlog(2)+2∫0π2log(sin(x))dxu=2x⇒=∫0πlog(sin(u))du2∫0πlog(sin(u))du=∫0π2log(sin(u))du+∫π2πlog(sin(u))du∫π2πlog(sin(u))du=∫0π2log(sin(π2+u))d(u+π2)=∫0π2log(cos(u))du⇒∫0πlog(sin(u))du2=∫0π2log(sin(u))du⇔πlog(2)+2∫0π2log(sin(u))du=∫0π2log(sin(u))du⇒∫0π2log(sin(u))du=−πlog(2) Commented by mathmax by abdo last updated on 06/Dec/19 errorofcalculussirmind.. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Prove-that-x-0-t-e-t-1-dt-n-1-1-e-x-n-n-2-Next Next post: Question-140529 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.