Question Number 74995 by vishalbhardwaj last updated on 05/Dec/19
$$\mathrm{find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{Log}\:\mathrm{cos}{x}\:{dx} \\ $$
Commented by mathmax by abdo last updated on 06/Dec/19
$${let}\:{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cosx}\right){dx}\:\:\:{and}\:{J}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sinx}\right){dx} \\ $$$${we}\:{hsve}\:{J}=_{{x}=\frac{\pi}{\mathrm{2}}−{t}} \:\:\:\int_{\frac{\pi}{\mathrm{2}}} ^{\mathrm{0}} {ln}\left({cost}\right)\left(−{dt}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cost}\right){dt}\:={I}\:\Rightarrow \\ $$$$\mathrm{2}{I}\:=\:{I}\:+{J}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cosx}\:{sinx}\right){dx}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\frac{\mathrm{1}}{\mathrm{2}}{sin}\left(\mathrm{2}{x}\right)\right){dx} \\ $$$$=−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left({sin}\left(\mathrm{2}{x}\right)\right){dx}\:\:{but} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left({sin}\left(\mathrm{2}{x}\right)\right){dx}\:=_{\mathrm{2}{x}\:={t}} \:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\pi} {ln}\left({sint}\right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sint}\right){dt}\:+\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} \:{ln}\left({sint}\right){dt} \\ $$$$\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} {ln}\left({sint}\right){dt}\:=_{{x}=\frac{\pi}{\mathrm{2}}+{u}} \:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cosu}\right){du}\:\Rightarrow \\ $$$$\mathrm{2}{I}=−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)+{I}\:\:\Rightarrow\:{I}=−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\:{we}\:{have}\:{proved}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cosx}\right){dx}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sinx}\right){dx}\:=−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right). \\ $$
Answered by mind is power last updated on 05/Dec/19
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{log}\left(\mathrm{cos}\left(\mathrm{x}\right)\right)\mathrm{dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{log}\left(\mathrm{sin}\left(\mathrm{x}\right)\right)\mathrm{dx},\therefore\mathrm{x}\rightarrow\frac{\pi}{\mathrm{2}}−\mathrm{x}\therefore \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{log}\left(\mathrm{sin}\left(\mathrm{2x}\right)\right)\mathrm{dx}=\int_{\mathrm{0}} ^{\pi} \mathrm{log}\left(\mathrm{2sin}\left(\mathrm{x}\right)\mathrm{cos}\left(\mathrm{x}\right)\right)=\pi\mathrm{log}\left(\mathrm{2}\right)+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{log}\left(\mathrm{sin}\left(\mathrm{x}\right)\right)\mathrm{dx}+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{log}\left(\mathrm{cos}\left(\mathrm{x}\right)\right)\mathrm{dx} \\ $$$$=\pi\mathrm{log}\left(\mathrm{2}\right)+\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{log}\left(\mathrm{sin}\left(\mathrm{x}\right)\right)\mathrm{dx} \\ $$$$\mathrm{u}=\mathrm{2x}\Rightarrow=\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{log}\left(\mathrm{sin}\left(\mathrm{u}\right)\right)\mathrm{du}}{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\pi} \mathrm{log}\left(\mathrm{sin}\left(\mathrm{u}\right)\right)\mathrm{du}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{log}\left(\mathrm{sin}\left(\mathrm{u}\right)\right)\mathrm{du}+\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} \mathrm{log}\left(\mathrm{sin}\left(\mathrm{u}\right)\right)\mathrm{du} \\ $$$$\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} \mathrm{log}\left(\mathrm{sin}\left(\mathrm{u}\right)\right)\mathrm{du}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{log}\left(\mathrm{sin}\left(\frac{\pi}{\mathrm{2}}+\mathrm{u}\right)\right)\mathrm{d}\left(\mathrm{u}+\frac{\pi}{\mathrm{2}}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{log}\left(\mathrm{cos}\left(\mathrm{u}\right)\right)\mathrm{du} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{log}\left(\mathrm{sin}\left(\mathrm{u}\right)\right)\mathrm{du}}{\mathrm{2}}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{log}\left(\mathrm{sin}\left(\mathrm{u}\right)\right)\mathrm{du} \\ $$$$\Leftrightarrow\pi\mathrm{log}\left(\mathrm{2}\right)+\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{log}\left(\mathrm{sin}\left(\mathrm{u}\right)\right)\mathrm{du}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{log}\left(\mathrm{sin}\left(\mathrm{u}\right)\right)\mathrm{du} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{log}\left(\mathrm{sin}\left(\mathrm{u}\right)\right)\mathrm{du}=−\pi\mathrm{log}\left(\mathrm{2}\right) \\ $$
Commented by mathmax by abdo last updated on 06/Dec/19
$${error}\:{of}\:{calculus}\:{sir}\:{mind}.. \\ $$