Menu Close

find-0-pi-2-Log-cosx-dx-




Question Number 74995 by vishalbhardwaj last updated on 05/Dec/19
find ∫_0 ^(π/2) Log cosx dx
find0π2Logcosxdx
Commented by mathmax by abdo last updated on 06/Dec/19
let I =∫_0 ^(π/2) ln(cosx)dx   and J =∫_0 ^(π/2) ln(sinx)dx  we hsve J=_(x=(π/2)−t)    ∫_(π/2) ^0 ln(cost)(−dt)=∫_0 ^(π/2) ln(cost)dt =I ⇒  2I = I +J =∫_0 ^(π/2) ln(cosx sinx)dx =∫_0 ^(π/2) ln((1/2)sin(2x))dx  =−(π/2)ln(2)+∫_0 ^(π/2)  ln(sin(2x))dx  but  ∫_0 ^(π/2)  ln(sin(2x))dx =_(2x =t)  (1/2) ∫_0 ^π ln(sint)dt  =(1/2) ∫_0 ^(π/2) ln(sint)dt +(1/2) ∫_(π/2) ^π  ln(sint)dt  ∫_(π/2) ^π ln(sint)dt =_(x=(π/2)+u)   ∫_0 ^(π/2) ln(cosu)du ⇒  2I=−(π/2)ln(2)+I  ⇒ I=−(π/2)ln(2) we have proved that  ∫_0 ^(π/2) ln(cosx)dx =∫_0 ^(π/2) ln(sinx)dx =−(π/2)ln(2).
letI=0π2ln(cosx)dxandJ=0π2ln(sinx)dxwehsveJ=x=π2tπ20ln(cost)(dt)=0π2ln(cost)dt=I2I=I+J=0π2ln(cosxsinx)dx=0π2ln(12sin(2x))dx=π2ln(2)+0π2ln(sin(2x))dxbut0π2ln(sin(2x))dx=2x=t120πln(sint)dt=120π2ln(sint)dt+12π2πln(sint)dtπ2πln(sint)dt=x=π2+u0π2ln(cosu)du2I=π2ln(2)+II=π2ln(2)wehaveprovedthat0π2ln(cosx)dx=0π2ln(sinx)dx=π2ln(2).
Answered by mind is power last updated on 05/Dec/19
∫_0 ^(π/2) log(cos(x))dx=∫_0 ^(π/2) log(sin(x))dx,∴x→(π/2)−x∴  ∫_0 ^(π/2) log(sin(2x))dx=∫_0 ^π log(2sin(x)cos(x))=πlog(2)+∫_0 ^(π/2) log(sin(x))dx+∫_0 ^(π/2) log(cos(x))dx  =πlog(2)+2∫_0 ^(π/2) log(sin(x))dx  u=2x⇒=∫_0 ^π ((log(sin(u))du)/2)  ∫_0 ^π log(sin(u))du=∫_0 ^(π/2) log(sin(u))du+∫_(π/2) ^π log(sin(u))du  ∫_(π/2) ^π log(sin(u))du=∫_0 ^(π/2) log(sin((π/2)+u))d(u+(π/2))=∫_0 ^(π/2) log(cos(u))du  ⇒∫_0 ^π ((log(sin(u))du)/2)=∫_0 ^(π/2) log(sin(u))du  ⇔πlog(2)+2∫_0 ^(π/2) log(sin(u))du=∫_0 ^(π/2) log(sin(u))du  ⇒∫_0 ^(π/2) log(sin(u))du=−πlog(2)
0π2log(cos(x))dx=0π2log(sin(x))dx,xπ2x0π2log(sin(2x))dx=0πlog(2sin(x)cos(x))=πlog(2)+0π2log(sin(x))dx+0π2log(cos(x))dx=πlog(2)+20π2log(sin(x))dxu=2x⇒=0πlog(sin(u))du20πlog(sin(u))du=0π2log(sin(u))du+π2πlog(sin(u))duπ2πlog(sin(u))du=0π2log(sin(π2+u))d(u+π2)=0π2log(cos(u))du0πlog(sin(u))du2=0π2log(sin(u))duπlog(2)+20π2log(sin(u))du=0π2log(sin(u))du0π2log(sin(u))du=πlog(2)
Commented by mathmax by abdo last updated on 06/Dec/19
error of calculus sir mind..
errorofcalculussirmind..

Leave a Reply

Your email address will not be published. Required fields are marked *