Menu Close

find-0-pi-d-x-2-2x-cos-1-with-x-real-




Question Number 72908 by mathmax by abdo last updated on 04/Nov/19
find ∫_0 ^π   (dθ/(x^2 −2x cosθ +1))  with x real.
find0πdθx22xcosθ+1withxreal.
Commented by mind is power last updated on 05/Nov/19
this is True for ∣x∣<1
thisisTrueforx∣<1
Commented by Tanmay chaudhury last updated on 05/Nov/19
Commented by Tanmay chaudhury last updated on 05/Nov/19
(1/(1−x^2 ))∫_0 ^π ((1−x^2 )/(x^2 −2xcosθ+1))dθ   [when x<1  ]  (1/(1−x^2 ))∫_0 ^π (1+2xcosθ+2x^2 cos2θ+2x^3 cos3θ+...)dθ  (1/(1−x^2 ))[∣θ∣_0 ^π +others terms=0  =(π/(1−x^2 )) answer    case−II  when x>1  let k=(1/x)   when x>1   so  k<1  ∫_0 ^π (dθ/(x^2 −2xcosθ+1))dθ  ∫_0 ^π (dθ/((1/k^2 )−(2/k)cosθ+1))dθ  ∫_0 ^π ((k^2 dθ)/(1−2kcosθ+k^2 ))dθ   [note k<1]  k^2 ×(π/(1−k^2 ))  =(π/((1/k^2 )−1))=so answer is   =(π/(x^2 −1))
11x20π1x2x22xcosθ+1dθ[whenx<1]11x20π(1+2xcosθ+2x2cos2θ+2x3cos3θ+)dθ11x2[θ0π+othersterms=0=π1x2answercaseIIwhenx>1letk=1xwhenx>1sok<10πdθx22xcosθ+1dθ0πdθ1k22kcosθ+1dθ0πk2dθ12kcosθ+k2dθ[notek<1]k2×π1k2=π1k21=soansweris=πx21
Commented by mathmax by abdo last updated on 05/Nov/19
let f(x)=∫_0 ^π    (dθ/(x^2 −2xcosθ +1))  changement tan((θ/2))=tgive  f(x)=∫_0 ^∞     ((2dt)/((1+t^2 )(x^2 −2x((1−t^2 )/(1+t^2 )) +1))) =∫_0 ^∞   ((2dt)/(x^2 (1+t^2 )−2x(1−t^2 )+1+t^2 ))  =∫_0 ^∞   ((2dt)/(x^2  +x^2 t^2 −2x+2xt^2  +1+t^2 )) =∫_0 ^∞   ((2dt)/((x^2 +2x+1)t^2 +x^2 −2x+1))  =∫_0 ^∞   ((2dt)/((x+1)^2 t^2 +(x−1)^2 )) =(1/((x+1)^2 ))∫_0 ^∞   ((2dt)/(t^2  +(((x−1)/(x+1)))^2 ))(  if x≠−1 and   x≠1) ⇒f(x)=_(t=∣((x−1)/(x+1))∣u)   (1/((x+1)^2 ))∫_0 ^∞    (2/((((x−1)/(x+1)))^2 {1+u^2 }))∣((x−1)/(x+1))∣du  =(1/((x−1)^2 ))×((∣x−1∣)/(∣x+1∣))∫_0 ^∞  ((2du)/(1+u^2 )) =(1/(∣x^2 −1∣))(2×(π/2))=(π/(∣x^2 −1∣)) ⇒  f(x)=(π/(∣x^2 −1∣))
letf(x)=0πdθx22xcosθ+1changementtan(θ2)=tgivef(x)=02dt(1+t2)(x22x1t21+t2+1)=02dtx2(1+t2)2x(1t2)+1+t2=02dtx2+x2t22x+2xt2+1+t2=02dt(x2+2x+1)t2+x22x+1=02dt(x+1)2t2+(x1)2=1(x+1)202dtt2+(x1x+1)2(ifx1andx1)f(x)=t=∣x1x+1u1(x+1)202(x1x+1)2{1+u2}x1x+1du=1(x1)2×x1x+102du1+u2=1x21(2×π2)=πx21f(x)=πx21
Commented by Tanmay chaudhury last updated on 05/Nov/19
whom you target by this remarks...reply now
whomyoutargetbythisremarksreplynow
Commented by ajfour last updated on 05/Nov/19
Great method, Tanmay Sir..
Greatmethod,TanmaySir..
Commented by Tanmay chaudhury last updated on 05/Nov/19
Thank you sir...
Thankyousir
Commented by ajfour last updated on 05/Nov/19
sorry sir, i concluded this on a  fleeting glance, forgive me..
sorrysir,iconcludedthisonafleetingglance,forgiveme..
Commented by Tanmay chaudhury last updated on 05/Nov/19
Commented by Tanmay chaudhury last updated on 05/Nov/19
taken from SL loney
takenfromSLloney
Commented by Tanmay chaudhury last updated on 05/Nov/19
taken from ML khanna
takenfromMLkhanna
Commented by Tanmay chaudhury last updated on 05/Nov/19
Commented by Tanmay chaudhury last updated on 05/Nov/19
sir pls check i have considerd  both case  x<1    and  x>1  pls
sirplscheckihaveconsiderdbothcasex<1andx>1pls
Commented by mind is power last updated on 05/Nov/19
nice solution
nicesolution
Commented by mind is power last updated on 05/Nov/19
nice sir
nicesir
Answered by mind is power last updated on 05/Nov/19
x^2 −2xcos(θ)+1    =(x−e^(iθ) )(x−e^(−iθ) )  ∫_0 ^π (dθ/((x−e^(iθ) )(x−e^(−iθ) )))=∫_0 (dθ/((x−e^(iθ) )(xe^(iθ) −1)))  f(x)=∫_0 ^π (dθ/(x^2 −2xcos(θ)+1))=f(−x)  juste find f in x∈R_+   z=e^(iθ) ⇒e^(iθ) =−idz  ⇒∫_1 ^(−1) ((−idz)/((x−z)(xz−1)))=i∫_1 ^(−1) (dz/((z−x)(xz−1)))  =i∫_1 ^(−1) (1/((x^2 −1)(z−x)))dz+((xdz)/((1−x^2 )(xz−1)))  =(i/(x^2 −1)){∫_1 ^(−1) (dz/(z−x))+∫_(−1) ^1 ((xdz)/(xz−1))}  =(i/(x^2 −1))(ln(−1−x)−ln(1−x)+ln(x−1)−ln(−x−1)  =(i/(x^2 −1))(ln(x−1)−ln(1−x))  ln(z_1 .z_2 )=ln(z_1 )+ln(z_2 )+2inπ  if x>1⇒ln(1−x)=ln(−1(x−1)=iπ+ln(x−1)  if x<1 ln(x−1)=iπ+ln(1−x)  ⇒  ln(x−1)−ln(1−x)=−iπ   x>1  ∫_0 ^π (dθ/(x^2 −2xcos(θ)+1))= { (((π/(x^2 −1))    x>1)),((((−π)/(x^2 −1)) 0≤ x<1)) :}
x22xcos(θ)+1=(xeiθ)(xeiθ)0πdθ(xeiθ)(xeiθ)=0dθ(xeiθ)(xeiθ1)f(x)=0πdθx22xcos(θ)+1=f(x)justefindfinxR+z=eiθeiθ=idz11idz(xz)(xz1)=i11dz(zx)(xz1)=i111(x21)(zx)dz+xdz(1x2)(xz1)=ix21{11dzzx+11xdzxz1}=ix21(ln(1x)ln(1x)+ln(x1)ln(x1)=ix21(ln(x1)ln(1x))ln(z1.z2)=ln(z1)+ln(z2)+2inπifx>1ln(1x)=ln(1(x1)=iπ+ln(x1)ifx<1ln(x1)=iπ+ln(1x)ln(x1)ln(1x)=iπx>10πdθx22xcos(θ)+1={πx21x>1πx210x<1
Answered by ajfour last updated on 05/Nov/19
I=∫_0 ^( π) (dθ/((x−1)^2 +4xsin^2 (θ/2)))  dividing by cos^2 (θ/2)    and    let tan (θ/2)=t  ⇒ (1/2)sec^2 (θ/2)dθ=dt  ⇒  (sec^2 (θ/2))dθ=2dt  I=∫^  ((2dt)/((x−1)^2 (1+t^2 )+4xt^2 ))    =(1/((x+1)^2 ))∫((2dt)/(t^2 +(((x−1)/(x+1)))^2 ))=(2/(x^2 −1))tan^(−1) [((t(x+1))/(x−1))]+c   =(2/(x^2 −1))((π/2)) = (π/(x^2 −1)) .   I = (π/(x^2 −1)) ∙
I=0πdθ(x1)2+4xsin2θ2dividingbycos2θ2andlettanθ2=t12sec2θ2dθ=dt(sec2θ2)dθ=2dtI=2dt(x1)2(1+t2)+4xt2=1(x+1)22dtt2+(x1x+1)2=2x21tan1[t(x+1)x1]+c=2x21(π2)=πx21.I=πx21
Commented by mind is power last updated on 05/Nov/19
sir if ((x+1)/(x−1))<0  lim t→∞ tan^− ((((x+1}t)/(x−1)))=−(π/2)
sirifx+1x1<0limttan((x+1}tx1)=π2
Commented by ajfour last updated on 05/Nov/19
true, thanks for the light.
true,thanksforthelight.

Leave a Reply

Your email address will not be published. Required fields are marked *