Menu Close

find-0-pi-dx-2-cosx-sinx-2-




Question Number 140976 by Mathspace last updated on 14/May/21
find ∫_0 ^π  (dx/((2−cosx−sinx)^2 ))
find0πdx(2cosxsinx)2
Answered by Ar Brandon last updated on 14/May/21
I=∫_0 ^π (dx/((2−cosx−sinx)^2 )) , t=tan(x/2)     =∫_0 ^∞ ((2dt)/((2−((1−t^2 )/(1+t^2 ))−((2t)/(1+t^2 )))^2 ))∙(1/(1+t^2 ))=2∫_0 ^∞ ((t^2 +1)/((3t^2 −2t+1)^2 ))dt     =(2/3)∫_0 ^∞ ((3t^2 −2t+1)/((3t^2 −2t+1)^2 ))dt+2∫_0 ^∞ ((2t/3+2/3)/((3t^2 −2t+1)^2 ))dt     =(2/3)∫_0 ^∞ (dt/(3t^2 −2t+1))+(4/3)∫_0 ^∞ ((t+1)/((3t^2 −2t+1)^2 ))dt     =(2/3)∫_0 ^∞ (dt/(3t^2 −2t+1))+[(4/3)∙((t−1/2)/(3t^2 −2t+1))+(4/3)∫(dt/(3t^2 −2t+1))]_0 ^∞      =2∫_0 ^∞ (dt/(3t^2 −2t+1))+(2/3)∙[((2t−1)/(3t^2 −2t+1))]_0 ^∞      =(2/3)∫_0 ^∞ (dt/(t^2 −(2/3)t+(1/3)))+(2/3)=(2/3)∫_0 ^∞ (dt/((t−(1/3))^2 +(2/9)))+(2/3)     =(2/3)∙[(3/( (√2)))arctan(((3t−1)/( (√2))))]_0 ^∞ +(2/3)=(√2)((π/2)+tan^(−1) (((√2)/2)))+(2/3)     ≈3.758527887
I=0πdx(2cosxsinx)2,t=tanx2=02dt(21t21+t22t1+t2)211+t2=20t2+1(3t22t+1)2dt=2303t22t+1(3t22t+1)2dt+202t/3+2/3(3t22t+1)2dt=230dt3t22t+1+430t+1(3t22t+1)2dt=230dt3t22t+1+[43t1/23t22t+1+43dt3t22t+1]0=20dt3t22t+1+23[2t13t22t+1]0=230dtt223t+13+23=230dt(t13)2+29+23=23[32arctan(3t12)]0+23=2(π2+tan1(22))+233.758527887
Commented by Ar Brandon last updated on 14/May/21
Mr MJS′ Ostrogradsky (line4→line5)
MrMJSOstrogradsky(line4line5)
Commented by Ar Brandon last updated on 14/May/21
Commented by Tawa11 last updated on 06/Nov/21
Weldone sir
Weldonesir

Leave a Reply

Your email address will not be published. Required fields are marked *