Menu Close

find-0-pi-e-cosx-sinx-dx-




Question Number 75082 by Rio Michael last updated on 07/Dec/19
find  ∫_0 ^π e^(cosx) sinx dx
find0πecosxsinxdx
Answered by mr W last updated on 07/Dec/19
∫_0 ^π e^(cosx) sinx dx  =−∫_0 ^π e^(cosx) d(cos x)  =−[e^(cos x) ]_0 ^π   =e−(1/e)
0πecosxsinxdx=0πecosxd(cosx)=[ecosx]0π=e1e
Commented by Rio Michael last updated on 07/Dec/19
i don′t understand step 2 sir
idontunderstandstep2sir
Commented by MJS last updated on 07/Dec/19
it′s short for  ∫_0 ^π e^(cos x) sin x dx=       [t=cos x → dx=−(dt/(sin x))]  =−∫_1 ^(−1) e^t dt=[−e^t ]_1 ^(−1) =[e^t ]_(−1) ^1 =e−(1/e)
itsshortforπ0ecosxsinxdx=[t=cosxdx=dtsinx]=11etdt=[et]11=[et]11=e1e
Commented by Rio Michael last updated on 07/Dec/19
thank you sir,thank you so much sir
thankyousir,thankyousomuchsir

Leave a Reply

Your email address will not be published. Required fields are marked *