Find-1-1-E-x-1-x-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 66446 by ~ À ® @ 237 ~ last updated on 15/Aug/19 Find∫1∞(1E(x)−1x)dx Commented by mathmax by abdo last updated on 15/Aug/19 letA=∫1+∞(1[x]−1x)dx⇒A=∑n=1∞∫nn+1(1n−1x)dx=∑n=1∞(1n−∫nn+1dxx)=∑n=1∞(1n−ln(n+1)+ln(n))letSn=∑k=1n(1k−ln(k+1)+ln(k))wehaveA=limn→+∞SnbutSn=Hn+∑k=1n{ln(k)−ln(k+1)}=Hn+(ln(1)−ln(2)+ln(2)−ln(3)+…ln(n)−ln(n+1)=Hn−ln(n+1)=Hn−ln(n)−ln(1+1n)butweknowlimn→+∞Hn−ln(n)=γ⇒A=limn→+∞Sn=γ(constantofEuler) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-lim-x-0-x-1-x-if-x-x-0-t-x-e-t-dt-Next Next post: nice-calculus-prove-that-1-0-1-li-2-1-x-2-pi-2-2-4-2-0-1-log-1-t-t-3-4-1-t-dt-pi-3-2-2-2-3-4-log-2-pi-2-hi Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.