Question Number 71314 by mathmax by abdo last updated on 13/Oct/19

Commented by mathmax by abdo last updated on 13/Oct/19
![let I=∫_(−1) ^1 ln((√(1+x))+(√(1−x)))dx ⇒I=2∫_0 ^1 ln((√(1+x))+(√(1−x)))dx (function even) I=_(x=cos(2t)) 2∫_(π/4) ^0 ln((√(1+cos(2t)))+(√(1−cos(2t))))(−2)sin(2t)dt =4 ∫_0 ^(π/4) ln((√2)cost +(√2)sint)sin(2t)dt =4∫_0 ^(π/4) ln((√2)((√2)cos(t−(π/4)))sin(2t)dt =4 ∫_0 ^(π/4) {ln(2)+ln(cos((π/4)−t)}sin(2t)dt =4ln(2)∫_0 ^(π/4) sin(2t)dt +4 ∫_0 ^(π/4) ln(cos((π/4)−t))sin(2t)dt =4ln(2)[−(1/2)cos(2t)]_0 ^(π/4) +4 ∫_0 ^(π/4) sin(2t)ln(cos((π/4)−t))dt =2ln(2) +4 ∫_0 ^(π/4) sin(2t)ln(cos((π/4)−t))dt changement (π/4)−t=u givd ∫_0 ^(π/4) sin(2t)ln(cos((π/4)−t))dt =−∫_0 ^(π/4) sin(2((π/4)−u))ln(cosu)(−du) =∫_0 ^(π/4) sin((π/2)−2u)ln(cosu)du =∫_0 ^(π/4) cos(2u) ln(cosu)du by parts f^′ =cos(2u) and g =ln(cosu) ⇎ ∫_0 ^(π/4) cos(2u)ln(cosu)du =[(1/2)sin(2u)ln(cosu)]_0 ^(π/4) −∫_0 ^(π/4) (1/2)sin(2u)(((−sinu)/(cosu)))du=(1/2)ln((1/( (√2))))+(1/2) ∫_0 ^(π/4) ((sin(u)(2sinu cosu))/(cosu))du =−(1/2)ln((√2)) +∫_0 ^(π/4) sin^2 u du =−(1/4)ln(2)+(1/2)∫_0 ^(π/4) (1−cos(2u))du =−(1/4)ln(2)+(π/8)−(1/4)[sin(2u)]_0 ^(π/4) =−(1/4)ln(2)+(π/8)−(1/4) ⇒ I =2ln(2)−ln(2)+(π/2) −1 =ln(2)+(π/2) −1](https://www.tinkutara.com/question/Q71345.png)
Answered by mind is power last updated on 13/Oct/19

Commented by MJS last updated on 13/Oct/19

Commented by mind is power last updated on 13/Oct/19

Commented by mathmax by abdo last updated on 13/Oct/19

Commented by MJS last updated on 13/Oct/19

Answered by MJS last updated on 13/Oct/19
![I=∫ln ((√(1+x))+(√(1−x))) dx= by parts ∫u′v=uv−∫uv′ u′=1 → u=x v=ln ((√(1+x))+(√(1−x))) → v′=((1−x^2 −(√(1−x^2 )))/(2x(1−x^2 ))) =x ln ((√(1+x))+(√(1−x))) −(1/2)∫((1−x^2 −(√(1−x^2 )))/(1−x^2 ))dx −(1/2)∫((1−x^2 −(√(1−x^2 )))/(1−x^2 ))dx= [t=arcsin x → dx=(√(1−x^2 ))dt] =(1/2)∫cos t dt −(1/2)∫dt= =(1/2)sin t −(t/2)=−(x/2)+(1/2)arcsin x ⇒ I=x ln ((√(1+x))+(√(1−x))) −(x/2)+(1/2)arcsin x +C](https://www.tinkutara.com/question/Q71333.png)
Commented by MJS last updated on 13/Oct/19
