Menu Close

find-1-2-5-4-x-3-dx-2-x-x-2-




Question Number 66338 by mathmax by abdo last updated on 12/Aug/19
find ∫_(1/2) ^(5/4)    ((x^3 dx)/( (√(2+x−x^2 ))))
find1254x3dx2+xx2
Commented by mathmax by abdo last updated on 14/Aug/19
let I =∫_(1/2) ^(5/4)  (x^3 /( (√(−x^2  +x+2))))dx  we have −x^2  +x+2 =−(x^2 −x−2)  =−((x−(1/2))^2 −2−(1/4))=−((x−(1/2))^2 −(9/4))=(9/4)−(x−(1/2))^2   changement x−(1/2)=(3/2)t give  t=((2x−1)/3) ⇒  I =∫_0 ^(1/2)  ((((3/2)t+(1/2))^3 )/((3/2)(√(1−t^2 ))))(3/2)dt =(1/8)∫_0 ^(1/2)   (((3t+1)^3 )/( (√(1−t^2 ))))dt  =(1/8) ∫_0 ^(1/2)  (((3t)^3  +3(3t)^2  +3(3t)+1)/( (√(1−t^2 ))))dt=(1/8)∫_0 ^(1/2) ((27t^3  +27t^2  +9t +1)/( (√(1−t^2 ))))dt  =((27)/8)∫_0 ^(1/2)  (t^3 /( (√(1−t^2 ))))dt +((27)/8)∫_0 ^(1/2) (t^2 /( (√(1−t^2 ))))dt +(9/8)∫_0 ^(1/2)  (t/( (√(1−t^2 ))))dt +(1/8)∫_0 ^(1/2)  (dt/( (√(1−t^2 ))))  we have ∫_0 ^(1/2)  (t^3 /( (√(1−t^2 ))))dt =_(t=sinα)      ∫_0 ^(π/6)   ((sin^3 α)/(cosα))cosαdα  =∫_0 ^(π/6)  sinα(1−cos^2 α)dα =∫_0 ^(π/6)  sinαdα +∫_0 ^(π/6) (−sinα)cos^2 αdα  =[−cosα]_0 ^(π/6)  +[(1/3)cos^3 α]_0 ^(π/6)  =1−((√3)/2) +(1/3)((((√3)/2))^3 −1)  ∫_0 ^(1/2)  (t^2 /( (√(1−t^2 ))))dt =_(t=sinκ)     ∫_0 ^(π/6)  ((sin^2 α)/(cosα)) cosα dα =∫_0 ^(π/6) ((1−cos(2α))/2)dα  =(π/(12)) −(1/4)[sin(2α)]_0 ^(π/6)  =(π/(12)) −(1/4)(((√3)/2)) =(π/(12))−((√3)/8)  ∫_0 ^(1/2)  (t/( (√(1−t^2 ))))dt =_(t=sinα)    ∫_0 ^(π/6)  ((sinα)/(cosα)) cosα dα =[−cosα]_0 ^(π/6)   =1−((√3)/2)  ∫_0 ^(1/2)  (dt/( (√(1−t^2 )))) =[arcsint]_0 ^(1/2)  =(π/6) ⇒  I =((27)/8){1−((√3)/2) +(1/3)(((3(√3))/8)−1)}+((27)/8){(π/(12))−((√3)/8)}+(9/8)(1−((√3)/2)) +(π/(48))
letI=1254x3x2+x+2dxwehavex2+x+2=(x2x2)=((x12)2214)=((x12)294)=94(x12)2changementx12=32tgivet=2x13I=012(32t+12)3321t232dt=18012(3t+1)31t2dt=18012(3t)3+3(3t)2+3(3t)+11t2dt=1801227t3+27t2+9t+11t2dt=278012t31t2dt+278012t21t2dt+98012t1t2dt+18012dt1t2wehave012t31t2dt=t=sinα0π6sin3αcosαcosαdα=0π6sinα(1cos2α)dα=0π6sinαdα+0π6(sinα)cos2αdα=[cosα]0π6+[13cos3α]0π6=132+13((32)31)012t21t2dt=t=sinκ0π6sin2αcosαcosαdα=0π61cos(2α)2dα=π1214[sin(2α)]0π6=π1214(32)=π1238012t1t2dt=t=sinα0π6sinαcosαcosαdα=[cosα]0π6=132012dt1t2=[arcsint]012=π6I=278{132+13(3381)}+278{π1238}+98(132)+π48

Leave a Reply

Your email address will not be published. Required fields are marked *