Menu Close

find-1-2-e-x-2x-1-dx-




Question Number 74889 by abdomathmax last updated on 03/Dec/19
find ∫_(−(1/2)) ^(+∞)   e^(−x) (√(2x+1))dx
$${find}\:\int_{−\frac{\mathrm{1}}{\mathrm{2}}} ^{+\infty} \:\:{e}^{−{x}} \sqrt{\mathrm{2}{x}+\mathrm{1}}{dx} \\ $$
Commented by mathmax by abdo last updated on 06/Dec/19
let I =∫_(−(1/2)) ^∞  e^(−x) (√(2x+1))dx  changement (√(2x+1))=t give  2x+1=t^2  ⇒2x=t^2 −1 ⇒x=((t^2 −1)/2) ⇒  I =∫_0 ^∞   e^(−((t^2 −1)/2)) t  tdt =(√e)  ∫_0 ^∞    t^2  e^(−(t^2 /2))  dt  =_((t/( (√2)))=u)    (√e)∫_0 ^∞   2u^2  e^(−u^2 ) (√2)du =2(√(2e))∫_0 ^∞   u^2  e^(−u^2 ) du  but  ∫_0 ^∞   u e^(−u^2 ) udu  =_(bypsrts)    [−(1/2)ue^(−u^2 ) ]_0 ^(+∞) −∫_0 ^(+∞) (−(1/2)e^(−u^2 ) ) du  =(1/2)∫_0 ^∞  e^(−u^2 ) du =(1/2)×((√π)/2) =((√π)/4) ⇒I =2(√(2e)) ((√π)/4) =(((√2)(√e)(√π))/2)  =(√((πe)/2))  ★ I=(√((πe)/2))★
$${let}\:{I}\:=\int_{−\frac{\mathrm{1}}{\mathrm{2}}} ^{\infty} \:{e}^{−{x}} \sqrt{\mathrm{2}{x}+\mathrm{1}}{dx}\:\:{changement}\:\sqrt{\mathrm{2}{x}+\mathrm{1}}={t}\:{give} \\ $$$$\mathrm{2}{x}+\mathrm{1}={t}^{\mathrm{2}} \:\Rightarrow\mathrm{2}{x}={t}^{\mathrm{2}} −\mathrm{1}\:\Rightarrow{x}=\frac{{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}}\:\Rightarrow \\ $$$${I}\:=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\frac{{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}}} {t}\:\:{tdt}\:=\sqrt{{e}}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:{t}^{\mathrm{2}} \:{e}^{−\frac{{t}^{\mathrm{2}} }{\mathrm{2}}} \:{dt} \\ $$$$=_{\frac{{t}}{\:\sqrt{\mathrm{2}}}={u}} \:\:\:\sqrt{{e}}\int_{\mathrm{0}} ^{\infty} \:\:\mathrm{2}{u}^{\mathrm{2}} \:{e}^{−{u}^{\mathrm{2}} } \sqrt{\mathrm{2}}{du}\:=\mathrm{2}\sqrt{\mathrm{2}{e}}\int_{\mathrm{0}} ^{\infty} \:\:{u}^{\mathrm{2}} \:{e}^{−{u}^{\mathrm{2}} } {du}\:\:{but} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{u}\:{e}^{−{u}^{\mathrm{2}} } {udu}\:\:=_{{bypsrts}} \:\:\:\left[−\frac{\mathrm{1}}{\mathrm{2}}{ue}^{−{u}^{\mathrm{2}} } \right]_{\mathrm{0}} ^{+\infty} −\int_{\mathrm{0}} ^{+\infty} \left(−\frac{\mathrm{1}}{\mathrm{2}}{e}^{−{u}^{\mathrm{2}} } \right)\:{du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:{e}^{−{u}^{\mathrm{2}} } {du}\:=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\sqrt{\pi}}{\mathrm{2}}\:=\frac{\sqrt{\pi}}{\mathrm{4}}\:\Rightarrow{I}\:=\mathrm{2}\sqrt{\mathrm{2}{e}}\:\frac{\sqrt{\pi}}{\mathrm{4}}\:=\frac{\sqrt{\mathrm{2}}\sqrt{{e}}\sqrt{\pi}}{\mathrm{2}} \\ $$$$=\sqrt{\frac{\pi{e}}{\mathrm{2}}} \\ $$$$\bigstar\:{I}=\sqrt{\frac{\pi{e}}{\mathrm{2}}}\bigstar \\ $$
Answered by mind is power last updated on 04/Dec/19
u=(√(2x+1))⇒x=((u^2 −1)/2)⇒dx=udu  =∫_0 ^(+∞) e^(−((u^2 −1)/2)) u^2 du  =(√e)∫_0 ^(+∞) −u.(−ue^(−(u^2 /2)) )du by part  ∫_0 ^(+∞) (−u).(−u.e^(−(u^2 /2)) )du=[−u.e^(−(u^2 /2)) ]+∫e^(−(u^2 /2)) du  =∫_0 ^(+∞) e^(−(u^2 /2)) du=(√2)∫_0 ^(+∞) e^(−u^2 ) du=((√π)/( (√2)))  we get   (√e).(√(π/2))=(√((π.e)/2))
$$\mathrm{u}=\sqrt{\mathrm{2x}+\mathrm{1}}\Rightarrow\mathrm{x}=\frac{\mathrm{u}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}}\Rightarrow\mathrm{dx}=\mathrm{udu} \\ $$$$=\int_{\mathrm{0}} ^{+\infty} \mathrm{e}^{−\frac{\mathrm{u}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}}} \mathrm{u}^{\mathrm{2}} \mathrm{du} \\ $$$$=\sqrt{\mathrm{e}}\int_{\mathrm{0}} ^{+\infty} −\mathrm{u}.\left(−\mathrm{ue}^{−\frac{\mathrm{u}^{\mathrm{2}} }{\mathrm{2}}} \right)\mathrm{du}\:\mathrm{by}\:\mathrm{part} \\ $$$$\int_{\mathrm{0}} ^{+\infty} \left(−\mathrm{u}\right).\left(−\mathrm{u}.\mathrm{e}^{−\frac{\mathrm{u}^{\mathrm{2}} }{\mathrm{2}}} \right)\mathrm{du}=\left[−\mathrm{u}.\mathrm{e}^{−\frac{\mathrm{u}^{\mathrm{2}} }{\mathrm{2}}} \right]+\int\mathrm{e}^{−\frac{\mathrm{u}^{\mathrm{2}} }{\mathrm{2}}} \mathrm{du} \\ $$$$=\int_{\mathrm{0}} ^{+\infty} \mathrm{e}^{−\frac{\mathrm{u}^{\mathrm{2}} }{\mathrm{2}}} \mathrm{du}=\sqrt{\mathrm{2}}\int_{\mathrm{0}} ^{+\infty} \mathrm{e}^{−\mathrm{u}^{\mathrm{2}} } \mathrm{du}=\frac{\sqrt{\pi}}{\:\sqrt{\mathrm{2}}} \\ $$$$\mathrm{we}\:\mathrm{get}\: \\ $$$$\sqrt{\mathrm{e}}.\sqrt{\frac{\pi}{\mathrm{2}}}=\sqrt{\frac{\pi.\mathrm{e}}{\mathrm{2}}} \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 04/Dec/19
thank you sir.
$${thank}\:{you}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *