Menu Close

find-1-2-e-x-2x-1-dx-




Question Number 74889 by abdomathmax last updated on 03/Dec/19
find ∫_(−(1/2)) ^(+∞)   e^(−x) (√(2x+1))dx
find12+ex2x+1dx
Commented by mathmax by abdo last updated on 06/Dec/19
let I =∫_(−(1/2)) ^∞  e^(−x) (√(2x+1))dx  changement (√(2x+1))=t give  2x+1=t^2  ⇒2x=t^2 −1 ⇒x=((t^2 −1)/2) ⇒  I =∫_0 ^∞   e^(−((t^2 −1)/2)) t  tdt =(√e)  ∫_0 ^∞    t^2  e^(−(t^2 /2))  dt  =_((t/( (√2)))=u)    (√e)∫_0 ^∞   2u^2  e^(−u^2 ) (√2)du =2(√(2e))∫_0 ^∞   u^2  e^(−u^2 ) du  but  ∫_0 ^∞   u e^(−u^2 ) udu  =_(bypsrts)    [−(1/2)ue^(−u^2 ) ]_0 ^(+∞) −∫_0 ^(+∞) (−(1/2)e^(−u^2 ) ) du  =(1/2)∫_0 ^∞  e^(−u^2 ) du =(1/2)×((√π)/2) =((√π)/4) ⇒I =2(√(2e)) ((√π)/4) =(((√2)(√e)(√π))/2)  =(√((πe)/2))  ★ I=(√((πe)/2))★
letI=12ex2x+1dxchangement2x+1=tgive2x+1=t22x=t21x=t212I=0et212ttdt=e0t2et22dt=t2=ue02u2eu22du=22e0u2eu2dubut0ueu2udu=bypsrts[12ueu2]0+0+(12eu2)du=120eu2du=12×π2=π4I=22eπ4=2eπ2=πe2I=πe2
Answered by mind is power last updated on 04/Dec/19
u=(√(2x+1))⇒x=((u^2 −1)/2)⇒dx=udu  =∫_0 ^(+∞) e^(−((u^2 −1)/2)) u^2 du  =(√e)∫_0 ^(+∞) −u.(−ue^(−(u^2 /2)) )du by part  ∫_0 ^(+∞) (−u).(−u.e^(−(u^2 /2)) )du=[−u.e^(−(u^2 /2)) ]+∫e^(−(u^2 /2)) du  =∫_0 ^(+∞) e^(−(u^2 /2)) du=(√2)∫_0 ^(+∞) e^(−u^2 ) du=((√π)/( (√2)))  we get   (√e).(√(π/2))=(√((π.e)/2))
u=2x+1x=u212dx=udu=0+eu212u2du=e0+u.(ueu22)dubypart0+(u).(u.eu22)du=[u.eu22]+eu22du=0+eu22du=20+eu2du=π2wegete.π2=π.e2
Commented by mathmax by abdo last updated on 04/Dec/19
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *