Question Number 67012 by mathmax by abdo last updated on 21/Aug/19
$${find}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{arctan}\left(\left[{x}\right]\right)}{{x}^{\mathrm{3}} }{dx} \\ $$
Commented by mathmax by abdo last updated on 24/Aug/19
$${let}\:{A}\:=\int_{\mathrm{1}} ^{+\infty} \:\frac{{arctan}\left(\left[{x}\right]\right)}{{x}^{\mathrm{3}} }{dx}\:\Rightarrow{A}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\int_{{n}} ^{{n}+\mathrm{1}} \:\frac{{actan}\left({n}\right)}{{x}^{\mathrm{3}} }{dx} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:{arctan}\left({n}\right)\int_{{n}} ^{{n}+\mathrm{1}} \:\frac{{dx}}{{x}^{\mathrm{3}} }\:\:\:{but}\: \\ $$$$\int_{{n}} ^{{n}+\mathrm{1}} \:\frac{{dx}}{{x}^{\mathrm{3}} }\:=\int_{{n}} ^{{n}+\mathrm{1}} {x}^{−\mathrm{3}} {dx}\:=\left[\frac{\mathrm{1}}{−\mathrm{2}}{x}^{−\mathrm{2}} \right]_{{n}} ^{{n}+\mathrm{1}} \:=−\frac{\mathrm{1}}{\mathrm{2}}\left\{\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right\}\:\Rightarrow \\ $$$${A}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:{arctan}\left({n}\right)\left\{\frac{\mathrm{1}}{{n}^{\mathrm{2}} }−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\right\} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{arctan}\left({n}\right)}{{n}^{\mathrm{2}} }−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{arctan}\left({n}\right)}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{arctan}\left({n}\right)}{{n}^{\mathrm{2}} }−\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{{arctan}\left({n}+\mathrm{1}\right)}{{n}^{\mathrm{2}} } \\ $$$${A}=\frac{\pi}{\mathrm{4}}\:+\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\frac{{arctan}\left({n}\right)−{arctan}\left({n}+\mathrm{1}\right)}{{n}^{\mathrm{2}} }\:….{be}\:{continued}…. \\ $$