Menu Close

Find-1-cos-2-x-1-tanx-2-dx-




Question Number 78352 by Khyati last updated on 16/Jan/20
Find ∫(1/(cos^2 x(1−tanx)^2 )) dx
$${Find}\:\int\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {x}\left(\mathrm{1}−{tanx}\right)^{\mathrm{2}} }\:{dx} \\ $$
Commented by jagoll last updated on 17/Jan/20
∫ ((sec^2 x dx)/((1−tan x)^2 )) = −∫ ((d(1−tan x))/((1−tan x)^2 ))  = −∫ u^(−2)  du = (1/u)+c  = (1/(1−tan x))+c
$$\int\:\frac{\mathrm{sec}\:^{\mathrm{2}} {x}\:{dx}}{\left(\mathrm{1}−\mathrm{tan}\:{x}\right)^{\mathrm{2}} }\:=\:−\int\:\frac{{d}\left(\mathrm{1}−\mathrm{tan}\:{x}\right)}{\left(\mathrm{1}−\mathrm{tan}\:{x}\right)^{\mathrm{2}} } \\ $$$$=\:−\int\:{u}^{−\mathrm{2}} \:{du}\:=\:\frac{\mathrm{1}}{{u}}+{c} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{1}−\mathrm{tan}\:{x}}+{c} \\ $$
Answered by MJS last updated on 16/Jan/20
∫(dx/(cos^2  x (1−tan x)^2 ))=∫(dx/(1−sin 2x))=       [t=tan x → dx=cos^2  x dt]  =∫(dt/((t−1)^2 ))=(1/(1−t))=((cos x)/(cos x −sin x))+C
$$\int\frac{{dx}}{\mathrm{cos}^{\mathrm{2}} \:{x}\:\left(\mathrm{1}−\mathrm{tan}\:{x}\right)^{\mathrm{2}} }=\int\frac{{dx}}{\mathrm{1}−\mathrm{sin}\:\mathrm{2}{x}}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:{x}\:\rightarrow\:{dx}=\mathrm{cos}^{\mathrm{2}} \:{x}\:{dt}\right] \\ $$$$=\int\frac{{dt}}{\left({t}−\mathrm{1}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{1}−{t}}=\frac{\mathrm{cos}\:{x}}{\mathrm{cos}\:{x}\:−\mathrm{sin}\:{x}}+{C} \\ $$
Commented by peter frank last updated on 17/Jan/20
thank you
$${thank}\:{you}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *