Menu Close

find-a-formulae-for-calculus-of-arctan-x-iy-




Question Number 73697 by mathmax by abdo last updated on 14/Nov/19
find a formulae for calculus of arctan(x+iy)
findaformulaeforcalculusofarctan(x+iy)
Commented by mathmax by abdo last updated on 15/Nov/19
we have proved that arctanz =(1/(2i))ln(((1+iz)/(1−iz))) ⇒  ln(x+iy) =(1/(2i))ln(((1+i(x+iy))/(1−i(x+iy))))=(1/(2i))ln(((1−y +ix)/(1+y−ix))) we have  ∣1−y+ix∣=(√((1−y)^2  +x^2 )) ⇒1−y+ix =(√((1−y)^2  +x^2 ))e^(iarctan((x/(1−y))))   ∣1+y−ix∣=(√((1+y)^2  +x^2 )) ⇒1+y−ix =(√((1+y)^2 +x^2 )) e^(−iarctan((x/(1+y))) )   ⇒arctan(x+iy)=(1/(2i))ln((((√(x^2 +(1−y)^2 ))e^(i arctan((x/(1−y)))) )/( (√(x^2  +(y+1)^2 ))e^(−iarctan((x/(1+y)))) )))  =(1/(4i))ln(x^2  +(1−y)^2 ) +(1/2) arctan((x/(1−y)))−(1/(4i))ln(x^2  +(y+1)^2 )  +(1/2) arctan((x/(1+y)))  =−(i/4)ln(x^2  +(1−y)^2 )+(i/4)ln(x^2  +(y+1)^2 )+(1/2)arctan((x/(1−y)))  +(1/2) arctan((x/(1+y)))  =(1/2) arctan((x/(1+y))) +(1/2) arctan((x/(1−y)))) +(i/4)ln(((x^2  +(y+1)^2 )/(x^2  +(1−y)^2 )))
wehaveprovedthatarctanz=12iln(1+iz1iz)ln(x+iy)=12iln(1+i(x+iy)1i(x+iy))=12iln(1y+ix1+yix)wehave1y+ix∣=(1y)2+x21y+ix=(1y)2+x2eiarctan(x1y)1+yix∣=(1+y)2+x21+yix=(1+y)2+x2eiarctan(x1+y)arctan(x+iy)=12iln(x2+(1y)2eiarctan(x1y)x2+(y+1)2eiarctan(x1+y))=14iln(x2+(1y)2)+12arctan(x1y)14iln(x2+(y+1)2)+12arctan(x1+y)=i4ln(x2+(1y)2)+i4ln(x2+(y+1)2)+12arctan(x1y)+12arctan(x1+y)=12arctan(x1+y)+12arctan(x1y))+i4ln(x2+(y+1)2x2+(1y)2)
Answered by Smail last updated on 15/Nov/19
arctan(x)=(1/(2i))ln(((x−i)/(x+i)))  so arctan(x+iy)=(1/(2i))ln(((x+iy−i)/(x+iy+i)))  ln(((x+i(y−1))/(x+i(y+1))))=a+ib  ((x+i(y−1))/(x+i(y+1)))=e^a e^(ib)   (((x+i(y−1))(x+i(y+1)))/(x^2 +(y+1)^2 ))=e^a e^(ib)   ((x^2 +2ixy−(y^2 −1))/(x^2 +(y+1)^2 ))=e^a e^(ib)   ((x^2 −y^2 +1)/(x^2 +(y+1)^2 ))+i((2xy)/(x^2 +(y+1)^2 ))=e^a e^(ib)   tan(b)=((2xy)/(x^2 −y^2 +1))⇔b=arctan(((2xy)/(x^2 −y^2 +1)))  e^a =(√((((x^2 −y^2 +1)/(x^2 +(y+1)^2 )))^2 +(((2xy)/(x^2 +(y+1)^2 )))^2 ))  e^a =((√(x^4 +y^4 −2x^2 y^2 +2x^2 −2y^2 +1+4x^2 y^2 ))/(x^2 +(y+1)^2 ))  a=ln(((√((x^2 +y^2 +1)^2 −4y^2 ))/(x^2 +(y+1)^2 )))  tan(x+iy)=(1/(2i))(ln(((√((x^2 +y^2 +1)^2 −4y^2 ))/(x^2 +(y+1)^2 )))+iarctan(((2xy)/(x^2 −y^2 +1)))  =(1/2)arctan(((2xy)/(x^2 −y^2 +1)))−i(1/2)ln(((√((x^2 +y^2 +1)^2 −4y^2 ))/(x^2 +(y+1)^2 )))
arctan(x)=12iln(xix+i)soarctan(x+iy)=12iln(x+iyix+iy+i)ln(x+i(y1)x+i(y+1))=a+ibx+i(y1)x+i(y+1)=eaeib(x+i(y1))(x+i(y+1))x2+(y+1)2=eaeibx2+2ixy(y21)x2+(y+1)2=eaeibx2y2+1x2+(y+1)2+i2xyx2+(y+1)2=eaeibtan(b)=2xyx2y2+1b=arctan(2xyx2y2+1)ea=(x2y2+1x2+(y+1)2)2+(2xyx2+(y+1)2)2ea=x4+y42x2y2+2x22y2+1+4x2y2x2+(y+1)2a=ln((x2+y2+1)24y2x2+(y+1)2)tan(x+iy)=12i(ln((x2+y2+1)24y2x2+(y+1)2)+iarctan(2xyx2y2+1)=12arctan(2xyx2y2+1)i12ln((x2+y2+1)24y2x2+(y+1)2)

Leave a Reply

Your email address will not be published. Required fields are marked *