find-a-formulae-for-calculus-of-arctan-x-iy- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 73697 by mathmax by abdo last updated on 14/Nov/19 findaformulaeforcalculusofarctan(x+iy) Commented by mathmax by abdo last updated on 15/Nov/19 wehaveprovedthatarctanz=12iln(1+iz1−iz)⇒ln(x+iy)=12iln(1+i(x+iy)1−i(x+iy))=12iln(1−y+ix1+y−ix)wehave∣1−y+ix∣=(1−y)2+x2⇒1−y+ix=(1−y)2+x2eiarctan(x1−y)∣1+y−ix∣=(1+y)2+x2⇒1+y−ix=(1+y)2+x2e−iarctan(x1+y)⇒arctan(x+iy)=12iln(x2+(1−y)2eiarctan(x1−y)x2+(y+1)2e−iarctan(x1+y))=14iln(x2+(1−y)2)+12arctan(x1−y)−14iln(x2+(y+1)2)+12arctan(x1+y)=−i4ln(x2+(1−y)2)+i4ln(x2+(y+1)2)+12arctan(x1−y)+12arctan(x1+y)=12arctan(x1+y)+12arctan(x1−y))+i4ln(x2+(y+1)2x2+(1−y)2) Answered by Smail last updated on 15/Nov/19 arctan(x)=12iln(x−ix+i)soarctan(x+iy)=12iln(x+iy−ix+iy+i)ln(x+i(y−1)x+i(y+1))=a+ibx+i(y−1)x+i(y+1)=eaeib(x+i(y−1))(x+i(y+1))x2+(y+1)2=eaeibx2+2ixy−(y2−1)x2+(y+1)2=eaeibx2−y2+1x2+(y+1)2+i2xyx2+(y+1)2=eaeibtan(b)=2xyx2−y2+1⇔b=arctan(2xyx2−y2+1)ea=(x2−y2+1x2+(y+1)2)2+(2xyx2+(y+1)2)2ea=x4+y4−2x2y2+2x2−2y2+1+4x2y2x2+(y+1)2a=ln((x2+y2+1)2−4y2x2+(y+1)2)tan(x+iy)=12i(ln((x2+y2+1)2−4y2x2+(y+1)2)+iarctan(2xyx2−y2+1)=12arctan(2xyx2−y2+1)−i12ln((x2+y2+1)2−4y2x2+(y+1)2) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 0-1-ln-1-x-x-2-x-dx-0-1-ln-1-x-3-ln-1-x-x-dx-pi-2-6-0-1-x-3n-1-n-dx-n-1-1-3n-2-pi-2-18-pi-2-9-Next Next post: Find-the-coefficient-of-in-the-expansion-of-1-x-1-x-2-1-x-3-1-x-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.