Menu Close

Find-a-function-f-x-satisfying-the-following-equation-a-b-1-2-f-x-2-f-x-2-d-dx-f-x-2-dx-0-b-gt-0-a-gt-0-b-a-




Question Number 1581 by 112358 last updated on 21/Aug/15
Find a function f(x) satisfying  the following equation.  ∫_a ^( b) [(1/2){f(x)}^2 −(√({f(x)}^2 +{(d/dx)(f(x))}^2 ))]dx=0  b>0,a>0 , b≠a.
Findafunctionf(x)satisfyingthefollowingequation.ab[12{f(x)}2{f(x)}2+{ddx(f(x))}2]dx=0b>0,a>0,ba.
Commented by 123456 last updated on 21/Aug/15
(1/2)f^2 −(√(f^2 +(f′)^2 ))=0  f^2 =2(√(f^2 +(f′)^2 ))  f^4 =4f^2 +4(f′)^2
12f2f2+(f)2=0f2=2f2+(f)2f4=4f2+4(f)2
Commented by 112358 last updated on 25/Aug/15
f^4 =4f^2 +4(f^′ )^2   f^′ =±(1/2)(√(f^4 −4f^2 ))  2f^′ =±f(√(f^2 −4))  2(df/dx)=±f(√(f^2 −4))  Integration by separation of variables  ⇒2∫(df/(f(√(f^2 −4))))=±∫dx=K±x  let f(x)=2secu⇒df=2secu×tanu du  ∴f(√(f^2 −4))=2secu(√(4sec^2 u−4))  =(2secu)(2(√(sec^2 u−1)))  ∵tan^2 u=sec^2 u−1  ⇒f(√(f^2 −4))=4secu(√(tan^2 u))=4secutanu   (if tanu>0)  ∴2∫((2secutanu)/(4secutanu))du=K±x  ∫du=K±x⇒u=K±x  ∵f(x)=2secu⇒u=cos^(−1) ((2/(f(x))))  ∴cos^(−1) ((2/(f(x))))=K±x  (2/(f(x)))=cos(K±x)  f(x)=2sec(K±x)
f4=4f2+4(f)2f=±12f44f22f=±ff242dfdx=±ff24Integrationbyseparationofvariables2dfff24=±dx=K±xletf(x)=2secudf=2secu×tanuduff24=2secu4sec2u4=(2secu)(2sec2u1)tan2u=sec2u1ff24=4secutan2u=4secutanu(iftanu>0)22secutanu4secutanudu=K±xdu=K±xu=K±xf(x)=2secuu=cos1(2f(x))cos1(2f(x))=K±x2f(x)=cos(K±x)f(x)=2sec(K±x)

Leave a Reply

Your email address will not be published. Required fields are marked *