Menu Close

find-a-Lim-x-ln-1-e-x-e-x-b-lim-x-x-2-3x-x-c-lim-x-0-x-ln-sinx-d-lim-x-e-2x-1-e-x-x-2-x-1-e-lim-x-1-xe-x-




Question Number 73555 by Rio Michael last updated on 13/Nov/19
find   a)  Lim_(x→−∞)  ((ln(1+e^x ))/e^x )  b) lim_(x→+∞)  ((√(x^2  + 3x))  −x)  c) lim_(x→0)  (√x) ln(sinx)  d)  lim_(x→+∞)  ((e^(2x+1) −e^x )/(x^2 −x−1))  e) lim_(x→−∞) [(√(1−xe^x  )) ]
$${find}\: \\ $$$$\left.{a}\right)\:\:\underset{{x}\rightarrow−\infty} {{Lim}}\:\frac{{ln}\left(\mathrm{1}+{e}^{{x}} \right)}{{e}^{{x}} } \\ $$$$\left.{b}\right)\:\underset{{x}\rightarrow+\infty} {{lim}}\:\left(\sqrt{{x}^{\mathrm{2}} \:+\:\mathrm{3}{x}}\:\:−{x}\right) \\ $$$$\left.{c}\right)\:\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\sqrt{{x}}\:{ln}\left({sinx}\right) \\ $$$$\left.{d}\right)\:\:\underset{{x}\rightarrow+\infty} {{lim}}\:\frac{{e}^{\mathrm{2}{x}+\mathrm{1}} −{e}^{{x}} }{{x}^{\mathrm{2}} −{x}−\mathrm{1}} \\ $$$$\left.{e}\right)\:\underset{{x}\rightarrow−\infty} {{lim}}\left[\sqrt{\mathrm{1}−{xe}^{{x}} \:}\:\right] \\ $$
Commented by mathmax by abdo last updated on 13/Nov/19
a) we use chang. e^x =t ⇒lim_(x→−∞) ((ln(1+e^x ))/e^x ) =lim_(t→0)    ((ln(1+t))/t)  =1  b) we have (√(x^2  +3x))−x =(√(x^2 (1+(3/x)))) −x    =x(√(1+(3/x)))−x ∼x(1+(3/(2x)))−x   (x→+∞)   ∼(3/2) ⇒lim_(x→+∞) (√(x^2 +3x))−x =(3/2)  c) lim_(x→0) (√x)ln(sinx)?    we have sinx ∼x ⇒(√x)ln(sinx)∼(√x)ln(x)  and lim_(x→0)   (√x)ln(x) =_((√x)=u)   lim_(u→0)   uln(u^2 ) =lim_(u→0) 2uln(u)=0
$$\left.{a}\right)\:{we}\:{use}\:{chang}.\:{e}^{{x}} ={t}\:\Rightarrow{lim}_{{x}\rightarrow−\infty} \frac{{ln}\left(\mathrm{1}+{e}^{{x}} \right)}{{e}^{{x}} }\:={lim}_{{t}\rightarrow\mathrm{0}} \:\:\:\frac{{ln}\left(\mathrm{1}+{t}\right)}{{t}} \\ $$$$=\mathrm{1} \\ $$$$\left.{b}\right)\:{we}\:{have}\:\sqrt{{x}^{\mathrm{2}} \:+\mathrm{3}{x}}−{x}\:=\sqrt{{x}^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{3}}{{x}}\right)}\:−{x}\:\: \\ $$$$={x}\sqrt{\mathrm{1}+\frac{\mathrm{3}}{{x}}}−{x}\:\sim{x}\left(\mathrm{1}+\frac{\mathrm{3}}{\mathrm{2}{x}}\right)−{x}\:\:\:\left({x}\rightarrow+\infty\right)\: \\ $$$$\sim\frac{\mathrm{3}}{\mathrm{2}}\:\Rightarrow{lim}_{{x}\rightarrow+\infty} \sqrt{{x}^{\mathrm{2}} +\mathrm{3}{x}}−{x}\:=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\left.{c}\right)\:{lim}_{{x}\rightarrow\mathrm{0}} \sqrt{{x}}{ln}\left({sinx}\right)?\:\:\:\:{we}\:{have}\:{sinx}\:\sim{x}\:\Rightarrow\sqrt{{x}}{ln}\left({sinx}\right)\sim\sqrt{{x}}{ln}\left({x}\right) \\ $$$${and}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\sqrt{{x}}{ln}\left({x}\right)\:=_{\sqrt{{x}}={u}} \:\:{lim}_{{u}\rightarrow\mathrm{0}} \:\:{uln}\left({u}^{\mathrm{2}} \right)\:={lim}_{{u}\rightarrow\mathrm{0}} \mathrm{2}{uln}\left({u}\right)=\mathrm{0} \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 13/Nov/19
d) let f(x) =((e^(2x+1) −e^x )/(x^2 −x−1)) ⇒f(x)=(e^(2x+1) /x^2 )×((1−e^(x−2x−1) )/(1−(1/x)−(1/x^2 )))  we have lim_(x→+∞)    (e^(2x+1) /x^2 ) =+∞   (e^x  defeat x^n  ...)  lim_(x→+∞)    ((1−e^(−x−1) )/(1−(1/x)−(1/x^2 ))) =1 ⇒lim_(x→+∞) f(x)=+∞
$$\left.{d}\right)\:{let}\:{f}\left({x}\right)\:=\frac{{e}^{\mathrm{2}{x}+\mathrm{1}} −{e}^{{x}} }{{x}^{\mathrm{2}} −{x}−\mathrm{1}}\:\Rightarrow{f}\left({x}\right)=\frac{{e}^{\mathrm{2}{x}+\mathrm{1}} }{{x}^{\mathrm{2}} }×\frac{\mathrm{1}−{e}^{{x}−\mathrm{2}{x}−\mathrm{1}} }{\mathrm{1}−\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \\ $$$${we}\:{have}\:{lim}_{{x}\rightarrow+\infty} \:\:\:\frac{{e}^{\mathrm{2}{x}+\mathrm{1}} }{{x}^{\mathrm{2}} }\:=+\infty\:\:\:\left({e}^{{x}} \:{defeat}\:{x}^{{n}} \:…\right) \\ $$$${lim}_{{x}\rightarrow+\infty} \:\:\:\frac{\mathrm{1}−{e}^{−{x}−\mathrm{1}} }{\mathrm{1}−\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}\:=\mathrm{1}\:\Rightarrow{lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)=+\infty \\ $$
Commented by Rio Michael last updated on 14/Nov/19
thanks sir
$${thanks}\:{sir} \\ $$
Commented by malwaan last updated on 14/Nov/19
b) lim_(x→∞) ((((√(x^2 +3x))−x)((√(x^2 +3x))+x))/( (√(x^2 +3x))+x))   = lim_(x→∞) ((x^2 +3x−x^2 )/(x[(√(1+(3/x)))+1]))   =lim_(x→∞) (3/( (√(1+(3/x)))+1))= (3/2)
$$\left.\boldsymbol{{b}}\right)\:\underset{\boldsymbol{{x}}\rightarrow\infty} {\boldsymbol{{lim}}}\frac{\left(\sqrt{\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{3}\boldsymbol{{x}}}−\boldsymbol{{x}}\right)\left(\sqrt{\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{3}\boldsymbol{{x}}}+\boldsymbol{{x}}\right)}{\:\sqrt{\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{3}\boldsymbol{{x}}}+\boldsymbol{{x}}}\: \\ $$$$=\:\underset{\boldsymbol{{x}}\rightarrow\infty} {\boldsymbol{{lim}}}\frac{\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{3}\boldsymbol{{x}}−\boldsymbol{{x}}^{\mathrm{2}} }{\boldsymbol{{x}}\left[\sqrt{\mathrm{1}+\frac{\mathrm{3}}{\boldsymbol{{x}}}}+\mathrm{1}\right]}\: \\ $$$$=\underset{\boldsymbol{{x}}\rightarrow\infty} {\boldsymbol{{lim}}}\frac{\mathrm{3}}{\:\sqrt{\mathrm{1}+\frac{\mathrm{3}}{\boldsymbol{{x}}}}+\mathrm{1}}=\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$
Answered by ajfour last updated on 13/Nov/19
a)   e^(−∞) →0   and lim_(h→0) ((ln (1+h))/h)=1  Ans. to (a) = 1  b) lim_(x→+∞)  ((√(x^2  + 3x))  −x)  =lim_(x→∞) ((3x)/( (√(x^2 +3x))+x))=lim_(x→∞) (3/( (√(1+(3/x)))+1))     =(3/2)   c) lim_(x→0)  (√x) ln(sinx)  =((lim_(x→0)  (d/dx)ln (sin x))/(lim_(x→0)  (d/dx)((1/( (√x))))))=((lim_(x→0) (1/(tan x)))/(lim_(x→0) (−(1/(2x(√x))))))  =lim_(x→0) ((x/(tan x)))×lim_(x→0) (−2(√x))  = 1×0 = 0 .  d)  lim_(x→+∞)  ((e^(2x+1) −e^x )/(x^2 −x−1))       =lim_(x→∞) e^x (((e×e^x −1)/(x^2 −x+1)))       = ∞ .
$$\left.{a}\right)\:\:\:{e}^{−\infty} \rightarrow\mathrm{0}\:\:\:{and}\:\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{ln}\:\left(\mathrm{1}+{h}\right)}{{h}}=\mathrm{1} \\ $$$${Ans}.\:{to}\:\left({a}\right)\:=\:\mathrm{1} \\ $$$$\left.{b}\right)\:\underset{{x}\rightarrow+\infty} {{lim}}\:\left(\sqrt{{x}^{\mathrm{2}} \:+\:\mathrm{3}{x}}\:\:−{x}\right) \\ $$$$=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{3}{x}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{3}{x}}+{x}}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{3}}{\:\sqrt{\mathrm{1}+\frac{\mathrm{3}}{{x}}}+\mathrm{1}} \\ $$$$\:\:\:=\frac{\mathrm{3}}{\mathrm{2}}\: \\ $$$$\left.{c}\right)\:\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\sqrt{{x}}\:{ln}\left({sinx}\right) \\ $$$$=\frac{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{d}}{{dx}}\mathrm{ln}\:\left(\mathrm{sin}\:{x}\right)}{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{d}}{{dx}}\left(\frac{\mathrm{1}}{\:\sqrt{{x}}}\right)}=\frac{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{tan}\:{x}}}{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(−\frac{\mathrm{1}}{\mathrm{2}{x}\sqrt{{x}}}\right)} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{{x}}{\mathrm{tan}\:{x}}\right)×\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(−\mathrm{2}\sqrt{{x}}\right) \\ $$$$=\:\mathrm{1}×\mathrm{0}\:=\:\mathrm{0}\:. \\ $$$$\left.{d}\right)\:\:\underset{{x}\rightarrow+\infty} {{lim}}\:\frac{{e}^{\mathrm{2}{x}+\mathrm{1}} −{e}^{{x}} }{{x}^{\mathrm{2}} −{x}−\mathrm{1}} \\ $$$$\:\:\:\:\:=\underset{{x}\rightarrow\infty} {\mathrm{lim}}{e}^{{x}} \left(\frac{{e}×{e}^{{x}} −\mathrm{1}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}\right) \\ $$$$\:\:\:\:\:=\:\infty\:. \\ $$
Commented by Rio Michael last updated on 13/Nov/19
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *