Menu Close

Find-a-non-constant-function-f-satisfying-f-0-1-f-2-0-and-f-x-y-f-x-f-y-f-2-x-f-y-2-




Question Number 2000 by Yozzi last updated on 29/Oct/15
Find a non−constant function f   satisfying f(0)=1,f(−2)=0 and  f(x−y)=f(x)f(y)−f(−2−x)f(y−2).
Findanonconstantfunctionfsatisfyingf(0)=1,f(2)=0andf(xy)=f(x)f(y)f(2x)f(y2).
Commented by prakash jain last updated on 29/Oct/15
x=0  f(−y)=f(0)f(y)−f(−2)f(y−2)  ∵f(−2)=0 for the above relation to be  true ∀y.  f(−y)=f(y)  ⇒even function  y=x  f(0)=[f(x)]^2 −f(−2−x)f(x−2)  [f(x)]^2 =1+f(x−2)f(x+2)
x=0f(y)=f(0)f(y)f(2)f(y2)f(2)=0fortheaboverelationtobetruey.f(y)=f(y)evenfunctiony=xf(0)=[f(x)]2f(2x)f(x2)[f(x)]2=1+f(x2)f(x+2)
Commented by prakash jain last updated on 30/Oct/15
y=2  f(x−2)=f(x)f(2)−f(x+2)f(0)  f(x−2)=−f(x+2)  f(x)=−f(x+4)  f(x+8)=[f(x+4+4)]=−f(x+4)=f(x)  f is periodic with period 8.  cos [(π/4)(x−y)]=cos (π/4)x∙cos (π/4)y+sin( (π/4)x)sin ((π/4)y)  sin ((πy)/4)=cos (((π(y−2))/4))  sin ((πx)/4)=−cos ((π/2)+(π/4)x)=−cos (((π(−x−2))/4))
y=2f(x2)=f(x)f(2)f(x+2)f(0)f(x2)=f(x+2)f(x)=f(x+4)f(x+8)=[f(x+4+4)]=f(x+4)=f(x)fisperiodicwithperiod8.cos[π4(xy)]=cosπ4xcosπ4y+sin(π4x)sin(π4y)sinπy4=cos(π(y2)4)sinπx4=cos(π2+π4x)=cos(π(x2)4)
Answered by Rasheed Soomro last updated on 02/Nov/15
Find a non−constant function f   satisfying f(0)=1,f(−2)=0 and  f(x−y)=f(x)f(y)−f(−2−x)f(y−2)...........(1)  −−−−−−×××−−−−−−−  x=−2,y=x  f(−2−x)=f(−2)f(x)−f(−2−{−2})f(x−2)  f(−2−x)=0.f(x)−f(0)f(x−2)=−f(x−2)  f(−2−x)=−f(x−2)=−{f(x)f(2)−f(−2−x)f(2−2)}                =−{f(x)f(2)−f(−2−x)f(0)}=f(−x−2)−f(2)f(x)  f(−x−2)−f(−x−2)=−f(2)f(x)  f(2)=0 ∣ f(x)=0  [But this not non−constant]  ∗∗∗  Substituting y=0  f(x)=f(x)f(0)−f(−2−x)f(−2)           =f(x)  This means f(x)  is arbitrary if y=0.  x=−2−x  f(−2−x−y)=f(−2−x)f(y)−f(−2−{})  continue
Findanonconstantfunctionfsatisfyingf(0)=1,f(2)=0andf(xy)=f(x)f(y)f(2x)f(y2)..(1)×××x=2,y=xf(2x)=f(2)f(x)f(2{2})f(x2)f(2x)=0.f(x)f(0)f(x2)=f(x2)f(2x)=f(x2)={f(x)f(2)f(2x)f(22)}={f(x)f(2)f(2x)f(0)}=f(x2)f(2)f(x)f(x2)f(x2)=f(2)f(x)f(2)=0f(x)=0[Butthisnotnonconstant]Substitutingy=0f(x)=f(x)f(0)f(2x)f(2)=f(x)Thismeansf(x)isarbitraryify=0.x=2xf(2xy)=f(2x)f(y)f(2{})continue
Answered by prakash jain last updated on 30/Oct/15
f(x)=cos ((πx)/4)
f(x)=cosπx4
Commented by prakash jain last updated on 30/Oct/15
see comments in question for explaination.
seecommentsinquestionforexplaination.

Leave a Reply

Your email address will not be published. Required fields are marked *