Menu Close

Find-a-series-for-x-2-tanh-xpi-tan-xpi-




Question Number 136132 by frc2crc last updated on 19/Mar/21
Find a series for (x^2 /(tanh (xπ)tan (xπ)))
$${Find}\:{a}\:{series}\:{for}\:\frac{{x}^{\mathrm{2}} }{\mathrm{tanh}\:\left({x}\pi\right)\mathrm{tan}\:\left({x}\pi\right)} \\ $$
Answered by Dwaipayan Shikari last updated on 19/Mar/21
sinh(πx)=πxΠ_(n=1) ^∞ (1+(x^2 /n^2 ))  ⇒(1/(tanh(πx)))=(d/dx)(log(πx)+Σ_(n=1) ^∞ log(1+(x^2 /n^2 )))  ⇒(1/(tanh(πx)))=(1/x)+2Σ_(n=1) ^∞ (x/(n^2 +x^2 ))  Similarly  (1/(tan(πx)))=(1/x)−2Σ_(n=1) ^∞ (x/(n^2 −x^2 ))  (x^2 /(tanh(πx)tan(πx)))=1+2(Σ_(n=1) ^∞ (x^2 /(n^2 +x^2 ))−Σ_(n=1) ^∞ (x^2 /(n^2 −x^2 )))−4x^4 (Σ_(n=1) ^∞ (1/((n^2 +x^2 )))Σ_(n=1) ^∞ (1/((n^2 −x^2 ))))
$${sinh}\left(\pi{x}\right)=\pi{x}\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{{x}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right) \\ $$$$\Rightarrow\frac{\mathrm{1}}{{tanh}\left(\pi{x}\right)}=\frac{{d}}{{dx}}\left({log}\left(\pi{x}\right)+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{log}\left(\mathrm{1}+\frac{{x}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right)\right) \\ $$$$\Rightarrow\frac{\mathrm{1}}{{tanh}\left(\pi{x}\right)}=\frac{\mathrm{1}}{{x}}+\mathrm{2}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}}{{n}^{\mathrm{2}} +{x}^{\mathrm{2}} } \\ $$$${Similarly}\:\:\frac{\mathrm{1}}{{tan}\left(\pi{x}\right)}=\frac{\mathrm{1}}{{x}}−\mathrm{2}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}}{{n}^{\mathrm{2}} −{x}^{\mathrm{2}} } \\ $$$$\frac{{x}^{\mathrm{2}} }{{tanh}\left(\pi{x}\right){tan}\left(\pi{x}\right)}=\mathrm{1}+\mathrm{2}\left(\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{2}} }{{n}^{\mathrm{2}} +{x}^{\mathrm{2}} }−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{2}} }{{n}^{\mathrm{2}} −{x}^{\mathrm{2}} }\right)−\mathrm{4}{x}^{\mathrm{4}} \left(\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}^{\mathrm{2}} −{x}^{\mathrm{2}} \right)}\right) \\ $$$$ \\ $$
Commented by frc2crc last updated on 19/Mar/21
i would have a sum like  Σ_(n=1) ^∞ a_n (xπ)^(2n−1)
$${i}\:{would}\:{have}\:{a}\:{sum}\:{like} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{a}_{{n}} \left({x}\pi\right)^{\mathrm{2}{n}−\mathrm{1}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *