Menu Close

Find-a-series-for-x-2-tanh-xpi-tan-xpi-




Question Number 136132 by frc2crc last updated on 19/Mar/21
Find a series for (x^2 /(tanh (xπ)tan (xπ)))
Findaseriesforx2tanh(xπ)tan(xπ)
Answered by Dwaipayan Shikari last updated on 19/Mar/21
sinh(πx)=πxΠ_(n=1) ^∞ (1+(x^2 /n^2 ))  ⇒(1/(tanh(πx)))=(d/dx)(log(πx)+Σ_(n=1) ^∞ log(1+(x^2 /n^2 )))  ⇒(1/(tanh(πx)))=(1/x)+2Σ_(n=1) ^∞ (x/(n^2 +x^2 ))  Similarly  (1/(tan(πx)))=(1/x)−2Σ_(n=1) ^∞ (x/(n^2 −x^2 ))  (x^2 /(tanh(πx)tan(πx)))=1+2(Σ_(n=1) ^∞ (x^2 /(n^2 +x^2 ))−Σ_(n=1) ^∞ (x^2 /(n^2 −x^2 )))−4x^4 (Σ_(n=1) ^∞ (1/((n^2 +x^2 )))Σ_(n=1) ^∞ (1/((n^2 −x^2 ))))
sinh(πx)=πxn=1(1+x2n2)1tanh(πx)=ddx(log(πx)+n=1log(1+x2n2))1tanh(πx)=1x+2n=1xn2+x2Similarly1tan(πx)=1x2n=1xn2x2x2tanh(πx)tan(πx)=1+2(n=1x2n2+x2n=1x2n2x2)4x4(n=11(n2+x2)n=11(n2x2))
Commented by frc2crc last updated on 19/Mar/21
i would have a sum like  Σ_(n=1) ^∞ a_n (xπ)^(2n−1)
iwouldhaveasumliken=1an(xπ)2n1

Leave a Reply

Your email address will not be published. Required fields are marked *