Question Number 6475 by WAI LIN last updated on 28/Jun/16
$${Find}\:{a}\:{solution}\:{of}\:{the}\:{form}\:\emptyset\left({x}\right)={x}^{{r}} \underset{{k}=\mathrm{0}} {\overset{\alpha} {\sum}}{c}_{{k}} {x}^{{k}} \:\left({x}\:>\:\mathrm{0}\right)\:{for}\: \\ $$$${xy}^{''} +\:{y}'\:−\:{y}\:=\:\mathrm{0}. \\ $$
Commented by Yozzii last updated on 29/Jun/16
$$\emptyset\left({x}\right)=\underset{{k}=\mathrm{0}} {\overset{\alpha} {\sum}}{c}_{{k}} {x}^{{k}+{r}} ={c}_{\mathrm{0}} {x}^{{r}} +{c}_{\mathrm{1}} {x}^{{r}+\mathrm{1}} +{c}_{\mathrm{2}} {x}^{{r}+\mathrm{2}} +…+{c}_{{k}} {x}^{{k}+{r}} +…+{c}_{\alpha} {x}^{\alpha+{r}} \\ $$$$\emptyset'\left({x}\right)=\underset{{k}=\mathrm{0}} {\overset{\alpha} {\sum}}{c}_{{k}} \left({k}+{r}\right){x}^{{k}+{r}−\mathrm{1}} \\ $$$$\emptyset'\left({x}\right)={c}_{\mathrm{0}} {rx}^{{r}−\mathrm{1}} +{c}_{\mathrm{1}} \left({r}+\mathrm{1}\right){x}^{{r}} +{c}_{\mathrm{2}} \left({r}+\mathrm{2}\right){x}^{{r}+\mathrm{1}} +{c}_{\mathrm{3}} \left({r}+\mathrm{3}\right){x}^{{r}+\mathrm{2}} +…+{c}_{{k}} \left({r}+{k}\right){x}^{{k}+{r}−\mathrm{1}} +…+{c}_{\alpha} \left({r}+\alpha\right){x}^{\alpha+{r}−\mathrm{1}} \\ $$$$\emptyset'\left({x}\right)−\emptyset\left({x}\right)={c}_{\mathrm{0}} {rx}^{{r}−\mathrm{1}} +\left({c}_{\mathrm{1}} \left({r}+\mathrm{1}\right)−{c}_{\mathrm{0}} \right){x}^{{r}} +\left({c}_{\mathrm{2}} \left({r}+\mathrm{2}\right)−{c}_{\mathrm{1}} \right){x}^{{r}+\mathrm{1}} +…+\left({c}_{{k}} \left({r}+{k}\right)−{c}_{{k}−\mathrm{1}} \right){x}^{{r}+{k}−\mathrm{1}} +…+\left({c}_{\alpha} \left({r}+\alpha\right)−{c}_{\alpha−\mathrm{1}} \right){x}^{{r}+\alpha−\mathrm{1}} −{c}_{\alpha} {x}^{{r}+\alpha} \\ $$$$\emptyset'\left({x}\right)−\emptyset\left({x}\right)={c}_{\mathrm{0}} {rx}^{{r}−\mathrm{1}} −{c}_{\alpha} {x}^{{r}+\alpha} +\underset{{k}=\mathrm{1}} {\overset{\alpha} {\sum}}\left({c}_{{k}} \left({r}+{k}\right)−{c}_{{k}−\mathrm{1}} \right){x}^{{r}+{k}−\mathrm{1}} \\ $$$${x}\emptyset''\left({x}\right)=\underset{{k}=\mathrm{0}} {\overset{\alpha} {\sum}}{c}_{{k}} \left({k}+{r}\right)\left({k}+{r}−\mathrm{1}\right){x}^{{k}+{r}−\mathrm{1}} \\ $$$${x}\emptyset''\left({x}\right)={c}_{\mathrm{0}} {r}\left({r}−\mathrm{1}\right){x}^{{r}−\mathrm{1}} +{c}_{\mathrm{1}} \left({r}+\mathrm{1}\right){rx}^{{r}} +{c}_{\mathrm{2}} \left({r}+\mathrm{2}\right)\left({r}+\mathrm{1}\right){x}^{{r}+\mathrm{1}} +{c}_{\mathrm{3}} \left({r}+\mathrm{3}\right)\left({r}+\mathrm{2}\right){x}^{{r}+\mathrm{2}} +…+{c}_{{k}} \left({k}+{r}\right)\left({k}+{r}−\mathrm{1}\right){x}^{{k}+{r}−\mathrm{1}} +…+{c}_{\alpha} \left({r}+\alpha\right)\left(\alpha+{r}−\mathrm{1}\right){x}^{\alpha+{r}−\mathrm{1}} \\ $$$${x}\emptyset''\left({x}\right)={c}_{\mathrm{0}} {r}\left({r}−\mathrm{1}\right){x}^{{r}−\mathrm{1}} +\underset{{k}=\mathrm{1}} {\overset{\alpha} {\sum}}{c}_{{k}} \left({k}+{r}\right)\left({k}+{r}−\mathrm{1}\right){x}^{{k}+{r}−\mathrm{1}} \\ $$$${x}\emptyset''\left({x}\right)+\emptyset'\left({x}\right)−\emptyset\left({x}\right)=\mathrm{0} \\ $$$$\therefore\:{x}^{{r}−\mathrm{1}} \left({c}_{\mathrm{0}} {r}^{\mathrm{2}} −{c}_{\mathrm{0}} {r}+{c}_{\mathrm{0}} {r}\right)−{c}_{\alpha} {x}^{{r}+\alpha} +\underset{{k}=\mathrm{1}} {\overset{\alpha} {\sum}}{x}^{{k}+{r}−\mathrm{1}} \left({c}_{{k}} \left({k}+{r}\right)^{\mathrm{2}} −{c}_{{k}−\mathrm{1}} \right)=\mathrm{0} \\ $$$${c}_{\mathrm{0}} {r}^{\mathrm{2}} {x}^{{r}−\mathrm{1}} −{c}_{\alpha} {x}^{{r}+\alpha} +\underset{{k}=\mathrm{1}} {\overset{\alpha} {\sum}}{x}^{{k}+{r}−\mathrm{1}} \left({c}_{{k}} \left({k}+{r}\right)−{c}_{{k}−\mathrm{1}} \right)=\mathrm{0} \\ $$$$\Rightarrow{c}_{\mathrm{0}} ={c}_{\alpha} =\mathrm{0} \\ $$$$\therefore{c}_{\mathrm{1}} \left(\mathrm{1}+{r}\right)−{c}_{\mathrm{0}} =\mathrm{0}\Rightarrow{c}_{\mathrm{1}} =\mathrm{0} \\ $$$${c}_{\mathrm{2}} \left(\mathrm{2}+{r}\right)−{c}_{\mathrm{1}} =\mathrm{0}\Rightarrow{c}_{\mathrm{2}} =\mathrm{0} \\ $$$${c}_{\mathrm{3}} \left(\mathrm{3}+{r}\right)−{c}_{\mathrm{2}} =\mathrm{0}\Rightarrow{c}_{\mathrm{3}} =\mathrm{0} \\ $$$$\therefore\:{c}_{{k}} =\mathrm{0}\:\forall{k}\in\mathbb{Z}^{\geqslant} \\ $$$$\therefore\:\emptyset\left({x}\right)=\mathrm{0}+\mathrm{0}+\mathrm{0}+\mathrm{0}+…+\mathrm{0}=\mathrm{0} \\ $$
Commented by nburiburu last updated on 29/Jun/16
$${xy}''+{y}'=\left({xy}'\right)'={y} \\ $$$${if}\:{y}={x}^{{w}} \:\Rightarrow\:\left({w}\right)^{\mathrm{2}} .{x}^{{w}−\mathrm{1}} ={x}^{{w}} \:{which}\:{is}\:{impossible}\:{for}\:{w}\in\mathbb{R} \\ $$$${so}\:{the}\:{only}\:{way}\:{to}\:{continue}\:{would}\:{be} \\ $$$${to}\:{assume}\:{w}={w}\left({x}\right) \\ $$$${y}={x}^{{w}\left({x}\right)} \Rightarrow\left({w}.{x}^{{w}} \right)'={x}^{{w}} \left[{w}'\left(\mathrm{1}+{ln}\:{x}\right)+{w}^{\mathrm{2}} /{x}\right]={x}^{{w}} \\ $$$${w}'\left(\mathrm{1}+{lnx}\right)+\frac{{w}^{\mathrm{2}} }{{x}}=\mathrm{1} \\ $$$${w}'\left({x}+{xlnx}\right)+{w}^{\mathrm{2}} ={x} \\ $$$${homogeneus}\:{solution}: \\ $$$${w}'\left({x}+{xlnx}\right)+{w}^{\mathrm{2}} =\mathrm{0} \\ $$$$\frac{\mathrm{1}}{{w}_{{h}} ^{\mathrm{2}} }\:{dw}_{{h}} \:=\:\frac{−\mathrm{1}}{{x}\left(\mathrm{1}+{lnx}\right)}{dx} \\ $$$$−\frac{\mathrm{1}}{{w}_{{h}} }\:=\:−\:{ln}\left(\mathrm{1}+{lnx}\right) \\ $$$${w}_{{h}} =\frac{\mathrm{1}}{{ln}\left(\mathrm{1}+{lnx}\right)} \\ $$$$ \\ $$$${Note}:\:{for}\:{the}\:{eq}\:{to}\:{have}\:{the}\:{structure} \\ $$$${mention}\:{as}\:\phi\left({x}\right)\:{the}\:{eq}\:{should}\:{be} \\ $$$${x}^{\mathrm{2}} {y}''+{xy}'−{y}=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$
Commented by WAI LIN last updated on 01/Jul/16
$${Using}\:{the}\:{power}\:{series}\:{method}\left({Frobenius}\:{method}\right) \\ $$