Menu Close

find-A-x-0-pi-2-ln-1-xsin-2-d-with-x-lt-1-




Question Number 72397 by mathmax by abdo last updated on 28/Oct/19
find A(x)=∫_0 ^(π/2) ln(1−xsin^2 θ)dθ   with ∣x∣<1
findA(x)=0π2ln(1xsin2θ)dθwithx∣<1
Commented by mathmax by abdo last updated on 28/Oct/19
at form of serie we have ln^′ (1−u)=((−1)/(1−u)) =−Σ_(n=0) ^∞  u^n  ⇒  ln(1−u)=−Σ_(n=0) ^∞  (u^(n+1) /(n+1)) +c   (c=0)  =−Σ_(n=1) ^∞  (u^n /n) ⇒ln(1−xsin^2 θ)=−Σ_(n=1) ^∞  ((x^n  sin^(2n) θ)/n) ⇒  A(x)=−Σ_(n=1) ^∞ (∫_0 ^(π/2)   sin^(2n) θ dθ)(x^n /n) =−Σ_(n=1) ^∞  (W_n /n) x^n   with W_n =∫_0 ^(π/2)  sin^(2n) dθ  (wallis integral)
atformofseriewehaveln(1u)=11u=n=0unln(1u)=n=0un+1n+1+c(c=0)=n=1unnln(1xsin2θ)=n=1xnsin2nθnA(x)=n=1(0π2sin2nθdθ)xnn=n=1WnnxnwithWn=0π2sin2ndθ(wallisintegral)
Commented by mathmax by abdo last updated on 28/Oct/19
let try the parametric method  we have  A(x)=∫_0 ^(π/2) ln(1−x((1−cos(2θ))/2))dθ =∫_0 ^(π/2) ln(2−x+xcosθ)dθ−(π/2)ln(2)  let f(x)=∫_0 ^(π/2) ln(2−x+xcos(2θ))dθ ⇒f^′ (x)=∫_0 ^(π/2) ((−1+cos(2θ))/(2−x +xcos(2θ)))dθ  =_(2θ=t)    (1/2)∫_0 ^π  ((−1+cost)/(2−x +xcost))dt =_(tan((t/2))=u)  (1/2)∫_0 ^∞   ((((1−u^2 )/(1+u^2 ))−1)/(2−x+x((1−u^2 )/(1+u^2 ))))((2du)/(1+u^2 ))  =(1/2)∫_0 ^∞ ((−4u)/((1+u^2 )^2 {2−x+x((1−u^2 )/(1+u^2 ))}))du  =−2∫_0 ^∞    (u/((2−x)(1+u^2 )^2  +x(1−u^4 )))du  =−2∫_0 ^∞   (u/((2−x)(u^4 +2u^2  +1)+x−xu^4 ))  =−2∫_0 ^∞    ((udu)/((2−2x)u^4  +(4−2x)u^2  +2))  =−∫_0 ^∞   ((udu)/((1−x)u^4 +(2−x)u^2  +1)) =∫_0 ^∞   ((udu)/((x−1)u^4 +(x−2)u^2 −1))  let decompose F(u) =(u/((x−1)u^4  +(x−2)u^2 −1))  (x−1)u^4  +(x−2)u^2 −1 =0 ⇒(x−1)z^2  +(x−2)z −1=0  with z =u^2   Δ=(x−2)^2 −4(x−1)(−1) =x^2 −4x +4+4x−4=x^2  ⇒  z_1 =((−x+2+∣x∣)/(2(x−1)))  and z_2 =((−x+2−∣x∣)/(2(x−1)))  case1  x≥0 and x≠1 ⇒z_1 =(1/(x−1)) and z_2 =((−2x+2)/(2(x−1))) =−1 ⇒  F(u) =(u/((x−1(z−z_1 )(z−z_2 ))) =(u/((x−1)(u^2 −(1/(x−1)))(u^2 +1)))  if x>1 ⇒F(u) =(u/((x−1)(u−(1/( (√(x−1)))))(u+(1/( (√(x−1)))))(u^2  +1)))  =(a/(u−(1/( (√(x−1)))))) +(b/(u+(1/( (√(x−1)))))) +((cu +d)/(u^2  +1))   ...be continued...
lettrytheparametricmethodwehaveA(x)=0π2ln(1x1cos(2θ)2)dθ=0π2ln(2x+xcosθ)dθπ2ln(2)letf(x)=0π2ln(2x+xcos(2θ))dθf(x)=0π21+cos(2θ)2x+xcos(2θ)dθ=2θ=t120π1+cost2x+xcostdt=tan(t2)=u1201u21+u212x+x1u21+u22du1+u2=1204u(1+u2)2{2x+x1u21+u2}du=20u(2x)(1+u2)2+x(1u4)du=20u(2x)(u4+2u2+1)+xxu4=20udu(22x)u4+(42x)u2+2=0udu(1x)u4+(2x)u2+1=0udu(x1)u4+(x2)u21letdecomposeF(u)=u(x1)u4+(x2)u21(x1)u4+(x2)u21=0(x1)z2+(x2)z1=0withz=u2Δ=(x2)24(x1)(1)=x24x+4+4x4=x2z1=x+2+x2(x1)andz2=x+2x2(x1)case1x0andx1z1=1x1andz2=2x+22(x1)=1F(u)=u(x1(zz1)(zz2)=u(x1)(u21x1)(u2+1)ifx>1F(u)=u(x1)(u1x1)(u+1x1)(u2+1)=au1x1+bu+1x1+cu+du2+1becontinued
Commented by mind is power last updated on 29/Oct/19
this will worck sir since A(0)=0,nice worck
thiswillworcksirsinceA(0)=0,niceworck
Commented by mathmax by abdo last updated on 29/Oct/19
we have A(0)=0
wehaveA(0)=0

Leave a Reply

Your email address will not be published. Required fields are marked *