Menu Close

Find-a-x-integer-k-1-sin-2-kxpi-k-k-1-sin-2-kxe-k-0-Where-represents-180-represents-3-14159265358-




Question Number 9727 by geovane10math last updated on 29/Dec/16
Find a x integer:  [Σ_(k=1) ^∞ ((sin(2Πkxπ))/k)] + [Σ_(k=1) ^∞ ((sin(2Πkxe))/k)] = 0     Where:  𝚷 represents 180° ;  𝛑 represents 3,14159265358... .
$$\mathrm{Find}\:\mathrm{a}\:\boldsymbol{{x}}\:{integer}: \\ $$$$\left[\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\left(\mathrm{2}\Pi{kx}\pi\right)}{{k}}\right]\:+\:\left[\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\left(\mathrm{2}\Pi{kxe}\right)}{{k}}\right]\:=\:\mathrm{0}\: \\ $$$$ \\ $$$$\boldsymbol{\mathrm{Where}}: \\ $$$$\boldsymbol{\Pi}\:\mathrm{represents}\:\mathrm{180}°\:; \\ $$$$\boldsymbol{\pi}\:\mathrm{represents}\:\mathrm{3},\mathrm{14159265358}…\:. \\ $$
Commented by prakash jain last updated on 29/Dec/16
x=0  Π and π are same.  π radians=Π.
$${x}=\mathrm{0} \\ $$$$\Pi\:\mathrm{and}\:\pi\:{are}\:{same}. \\ $$$$\pi\:{radians}=\Pi. \\ $$
Commented by geovane10math last updated on 29/Dec/16
ok thanks, but there is a solution ≠ 0????
$${ok}\:{thanks},\:{but}\:{there}\:{is}\:{a}\:{solution}\:\neq\:\mathrm{0}???? \\ $$$$ \\ $$
Commented by FilupSmith last updated on 29/Dec/16
[Σ_(k=1) ^∞ ((sin(2Πkxπ))/k)] + [Σ_(k=1) ^∞ ((sin(2Πkxe))/k)] = 0  Π=π  ∴Σ_(k=1) ^∞ ((sin(2π^2 kx)+sin(2πekx))/k)=0     one situation:  sin(2π^2 kx)+sin(2πekx)=0    working
$$\left[\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\left(\mathrm{2}\Pi{kx}\pi\right)}{{k}}\right]\:+\:\left[\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\left(\mathrm{2}\Pi{kxe}\right)}{{k}}\right]\:=\:\mathrm{0} \\ $$$$\Pi=\pi \\ $$$$\therefore\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\left(\mathrm{2}\pi^{\mathrm{2}} {kx}\right)+\mathrm{sin}\left(\mathrm{2}\pi{ekx}\right)}{{k}}=\mathrm{0} \\ $$$$\: \\ $$$$\boldsymbol{\mathrm{one}}\:\boldsymbol{\mathrm{situation}}: \\ $$$$\mathrm{sin}\left(\mathrm{2}\pi^{\mathrm{2}} {kx}\right)+\mathrm{sin}\left(\mathrm{2}\pi{ekx}\right)=\mathrm{0} \\ $$$$ \\ $$$${working} \\ $$
Commented by geovane10math last updated on 29/Dec/16
Friend, if you find a integer and non-zero  solution, congratulations!, you proved  that 𝛑 + e is rational (this is a open problem)    If don′t exists x integer, so 𝛑 + e is  irrational    I can show you why find this x solve  this problem          OK  ????????????
$${Friend},\:{if}\:{you}\:{find}\:{a}\:{integer}\:{and}\:{non}-{zero} \\ $$$${solution},\:{congratulations}!,\:{you}\:{proved} \\ $$$${that}\:\boldsymbol{\pi}\:+\:\boldsymbol{{e}}\:{is}\:{rational}\:\left({this}\:{is}\:{a}\:{open}\:{problem}\right) \\ $$$$ \\ $$$${If}\:{don}'{t}\:{exists}\:{x}\:{integer},\:{so}\:\boldsymbol{\pi}\:+\:\boldsymbol{{e}}\:{is} \\ $$$${irrational} \\ $$$$ \\ $$$${I}\:{can}\:{show}\:{you}\:{why}\:{find}\:{this}\:\boldsymbol{{x}}\:{solve} \\ $$$${this}\:{problem} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\boldsymbol{\mathrm{OK}}\:\:???????????? \\ $$
Commented by geovane10math last updated on 29/Dec/16
THE PROOF THAT 𝛑 + e IS IRRATIONAL  Consider {π + e = (y/x) ∣ x,y ∈ Z, x ≠ 0}                         xπ + xe = y   y is a integer:                           xπ + xe = y,0   We know that  0,999...=1 , so, if we sum  both the sides by (y−1) we have:                   (y−1),999... = y=y,0                     xπ + xe = (y−1),999...  Proposition: If q is rational and k is irra-  tional, so qk is irrational.  Demonstration: Suppose that this product  is rational.                            qk = Q                             k = (Q/q)  An irrational cannot be a ratio between  rationals.                                                                                      ■   So, x𝛑 and xe are both irrationals. If  they′re irrationals, so the decimal part is  a infinite number that don′t repeat (if repeat,  is a periodic tithe).                       xπ + xe = (y−1),999...  For this equation to be true, the sum of  the decimal part of x𝛑 and the decimal  part of xe must be 0,999... (if results in  something different, you can see that  the equation would be wrong).    The decimal part (or fractional part) is  the number of decimal places.                    Frac(s) = s − ⌊s⌋  ⌊s⌋ = floor function  Notation:                           Frac(s) = {s}  So,                      {xπ} + {xe} = 0,999...                      {xπ} + {xe} = 1  In Wikipedia, search in Floor and Ceiling  functions, you find the formula              ⌊s⌋ = s − (1/2) + (1/π)Σ_(k=1) ^∞ ((sin(2πks))/k)  So,                 {s} = (1/2) − (1/π)Σ_(k=1) ^∞ ((sin(2πks))/k)                        {xπ} + {xe} = 1  (1/2) − (1/π)Σ_(k=1) ^∞ ((sin(2πk∙xπ))/k) + (1/2) − (1/π)Σ_(k=1) ^∞ ((sin(2πk∙xe))/k)=1  1 − (1/π)[Σ_(k=1) ^∞ ((sin(2πk∙xπ))/k) + Σ_(k=1) ^∞ ((sin(2πk∙xe))/k)]=1  − (1/π)[Σ_(k=1) ^∞ ((sin(2πk∙xπ))/k) + Σ_(k=1) ^∞ ((sin(2πk∙xe))/k)]=0  Σ_(k=1) ^∞ ((sin(2πk∙xπ))/k) + Σ_(k=1) ^∞ ((sin(2πk∙xe))/k) = 0  Good luck!  ;)  Caution: π and Π are not equals (I think)  because  π = 3,141...         Π = 180° = π rad                 π = π rad → it′s wrong
$$\mathrm{THE}\:\mathrm{PROOF}\:\mathrm{THAT}\:\boldsymbol{\pi}\:+\:\boldsymbol{{e}}\:\mathrm{IS}\:\mathrm{IRRATIONAL} \\ $$$${Consider}\:\left\{\pi\:+\:{e}\:=\:\frac{{y}}{{x}}\:\mid\:{x},{y}\:\in\:\mathbb{Z},\:{x}\:\neq\:\mathrm{0}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}\pi\:+\:{xe}\:=\:{y} \\ $$$$\:{y}\:{is}\:{a}\:{integer}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}\pi\:+\:{xe}\:=\:{y},\mathrm{0} \\ $$$$\:{We}\:{know}\:{that}\:\:\mathrm{0},\mathrm{999}…=\mathrm{1}\:,\:{so},\:{if}\:{we}\:{sum} \\ $$$${both}\:{the}\:{sides}\:{by}\:\left({y}−\mathrm{1}\right)\:{we}\:{have}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({y}−\mathrm{1}\right),\mathrm{999}…\:=\:{y}={y},\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}\pi\:+\:{xe}\:=\:\left({y}−\mathrm{1}\right),\mathrm{999}… \\ $$$$\mathrm{Proposition}:\:\mathrm{If}\:\boldsymbol{\mathrm{q}}\:\mathrm{is}\:\mathrm{rational}\:\mathrm{and}\:\boldsymbol{\mathrm{k}}\:\mathrm{is}\:\mathrm{irra}- \\ $$$$\mathrm{tional},\:\mathrm{so}\:\boldsymbol{\mathrm{qk}}\:\mathrm{is}\:\mathrm{irrational}. \\ $$$$\mathrm{Demonstration}:\:\mathrm{Suppose}\:\mathrm{that}\:\mathrm{this}\:\mathrm{product} \\ $$$$\mathrm{is}\:\mathrm{rational}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{qk}}\:=\:\boldsymbol{\mathrm{Q}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{k}}\:=\:\frac{\boldsymbol{\mathrm{Q}}}{\boldsymbol{\mathrm{q}}} \\ $$$$\mathrm{An}\:\mathrm{irrational}\:\mathrm{cannot}\:\mathrm{be}\:\mathrm{a}\:\mathrm{ratio}\:\mathrm{between} \\ $$$$\mathrm{rationals}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare \\ $$$$\:\mathrm{So},\:\boldsymbol{{x}\pi}\:\mathrm{and}\:\boldsymbol{{xe}}\:\mathrm{are}\:\mathrm{both}\:\mathrm{irrationals}.\:\mathrm{If} \\ $$$$\mathrm{they}'\mathrm{re}\:\mathrm{irrationals},\:\mathrm{so}\:\mathrm{the}\:\mathrm{decimal}\:\mathrm{part}\:\mathrm{is} \\ $$$$\mathrm{a}\:\mathrm{infinite}\:\mathrm{number}\:\mathrm{that}\:\mathrm{don}'\mathrm{t}\:\mathrm{repeat}\:\left(\mathrm{if}\:\mathrm{repeat},\right. \\ $$$$\left.\mathrm{is}\:\mathrm{a}\:\mathrm{periodic}\:\mathrm{tithe}\right). \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}\pi\:+\:{xe}\:=\:\left({y}−\mathrm{1}\right),\mathrm{999}… \\ $$$$\mathrm{For}\:\mathrm{this}\:\mathrm{equation}\:\mathrm{to}\:\mathrm{be}\:\mathrm{true},\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{decimal}\:\mathrm{part}\:\mathrm{of}\:\boldsymbol{{x}\pi}\:\mathrm{and}\:\mathrm{the}\:\mathrm{decimal} \\ $$$$\mathrm{part}\:\mathrm{of}\:\boldsymbol{{xe}}\:\mathrm{must}\:\mathrm{be}\:\mathrm{0},\mathrm{999}…\:\left(\mathrm{if}\:\mathrm{results}\:\mathrm{in}\right. \\ $$$$\mathrm{something}\:\mathrm{different},\:\mathrm{you}\:\mathrm{can}\:\mathrm{see}\:\mathrm{that} \\ $$$$\left.\mathrm{the}\:\mathrm{equation}\:\mathrm{would}\:\mathrm{be}\:\mathrm{wrong}\right). \\ $$$$ \\ $$$$\mathrm{The}\:\mathrm{decimal}\:\mathrm{part}\:\left(\mathrm{or}\:\mathrm{fractional}\:\mathrm{part}\right)\:\mathrm{is} \\ $$$$\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{decimal}\:\mathrm{places}.\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Frac}\left({s}\right)\:=\:{s}\:−\:\lfloor{s}\rfloor \\ $$$$\lfloor{s}\rfloor\:=\:{floor}\:{function} \\ $$$${Notation}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Frac}\left({s}\right)\:=\:\left\{{s}\right\} \\ $$$$\mathrm{So}, \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left\{{x}\pi\right\}\:+\:\left\{{xe}\right\}\:=\:\mathrm{0},\mathrm{999}… \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left\{{x}\pi\right\}\:+\:\left\{{xe}\right\}\:=\:\mathrm{1} \\ $$$$\mathrm{In}\:\mathrm{Wikipedia},\:\mathrm{search}\:\mathrm{in}\:\mathrm{Floor}\:\mathrm{and}\:\mathrm{Ceiling} \\ $$$$\mathrm{functions},\:\mathrm{you}\:\mathrm{find}\:\mathrm{the}\:\mathrm{formula} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\lfloor{s}\rfloor\:=\:{s}\:−\:\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\mathrm{1}}{\pi}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\left(\mathrm{2}\pi{ks}\right)}{{k}} \\ $$$$\mathrm{So}, \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left\{{s}\right\}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:−\:\frac{\mathrm{1}}{\pi}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\left(\mathrm{2}\pi{ks}\right)}{{k}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left\{{x}\pi\right\}\:+\:\left\{{xe}\right\}\:=\:\mathrm{1} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\:−\:\frac{\mathrm{1}}{\pi}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\left(\mathrm{2}\pi{k}\centerdot{x}\pi\right)}{{k}}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\:−\:\frac{\mathrm{1}}{\pi}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\left(\mathrm{2}\pi{k}\centerdot{xe}\right)}{{k}}=\mathrm{1} \\ $$$$\mathrm{1}\:−\:\frac{\mathrm{1}}{\pi}\left[\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\left(\mathrm{2}\pi{k}\centerdot{x}\pi\right)}{{k}}\:+\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\left(\mathrm{2}\pi{k}\centerdot{xe}\right)}{{k}}\right]=\mathrm{1} \\ $$$$−\:\frac{\mathrm{1}}{\pi}\left[\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\left(\mathrm{2}\pi{k}\centerdot{x}\pi\right)}{{k}}\:+\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\left(\mathrm{2}\pi{k}\centerdot{xe}\right)}{{k}}\right]=\mathrm{0} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\left(\mathrm{2}\pi{k}\centerdot{x}\pi\right)}{{k}}\:+\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\left(\mathrm{2}\pi{k}\centerdot{xe}\right)}{{k}}\:=\:\mathrm{0} \\ $$$$\left.\mathrm{Good}\:\mathrm{luck}!\:\:;\right) \\ $$$${Caution}:\:\pi\:{and}\:\Pi\:{are}\:{not}\:{equals}\:\left({I}\:{think}\right) \\ $$$${because} \\ $$$$\pi\:=\:\mathrm{3},\mathrm{141}…\:\:\:\:\:\:\:\:\:\Pi\:=\:\mathrm{180}°\:=\:\pi\:\mathrm{rad} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\pi\:=\:\pi\:\mathrm{rad}\:\rightarrow\:{it}'{s}\:{wrong} \\ $$$$ \\ $$
Commented by prakash jain last updated on 30/Dec/16
when we write sinx usualy notation  is x is in radians.  sin π=sin 180°  Π is given as equivalent to 180° so  Π=π radians  sin Π=sin π    sin 2π=0 since π=3.14.. ≡180°  sin 2Π=0 in the given question.
$$\mathrm{when}\:\mathrm{we}\:\mathrm{write}\:\mathrm{sin}{x}\:\mathrm{usualy}\:\mathrm{notation} \\ $$$$\mathrm{is}\:{x}\:\mathrm{is}\:\mathrm{in}\:\mathrm{radians}. \\ $$$$\mathrm{sin}\:\pi=\mathrm{sin}\:\mathrm{180}° \\ $$$$\Pi\:\mathrm{is}\:\mathrm{given}\:\mathrm{as}\:\mathrm{equivalent}\:\mathrm{to}\:\mathrm{180}°\:\mathrm{so} \\ $$$$\Pi=\pi\:\mathrm{radians} \\ $$$$\mathrm{sin}\:\Pi=\mathrm{sin}\:\pi \\ $$$$ \\ $$$$\mathrm{sin}\:\mathrm{2}\pi=\mathrm{0}\:\mathrm{since}\:\pi=\mathrm{3}.\mathrm{14}..\:\equiv\mathrm{180}° \\ $$$$\mathrm{sin}\:\mathrm{2}\Pi=\mathrm{0}\:\mathrm{in}\:\mathrm{the}\:\mathrm{given}\:\mathrm{question}. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *