Menu Close

Find-all-continuous-functions-f-x-such-that-f-2x-1-f-x-for-all-real-x-




Question Number 6946 by 314159 last updated on 03/Aug/16
Find all continuous functions f(x) such   that f(2x+1)=f(x) for all real x.
$${Find}\:{all}\:{continuous}\:{functions}\:{f}\left({x}\right)\:{such}\: \\ $$$${that}\:{f}\left(\mathrm{2}{x}+\mathrm{1}\right)={f}\left({x}\right)\:{for}\:{all}\:{real}\:{x}. \\ $$
Commented by Yozzii last updated on 04/Aug/16
f(1)=f(0)  f′(x)=2f′(2x+1)  f(x)=c∈R⇒ f(2x+1)=c=f(x) ∀x∈R
$${f}\left(\mathrm{1}\right)={f}\left(\mathrm{0}\right) \\ $$$${f}'\left({x}\right)=\mathrm{2}{f}'\left(\mathrm{2}{x}+\mathrm{1}\right) \\ $$$${f}\left({x}\right)={c}\in\mathbb{R}\Rightarrow\:{f}\left(\mathrm{2}{x}+\mathrm{1}\right)={c}={f}\left({x}\right)\:\forall{x}\in\mathbb{R} \\ $$$$ \\ $$$$ \\ $$
Commented by Rasheed Soomro last updated on 04/Aug/16
Same answer as above but with different process   Suppose that f(x) is a linear polynomial ax+b        f(x)=ax+b        f(2x+1)=a(2x+1)+b=2ax+a+b  As    f(2x+1)=f(x)  So    2ax+a+b=ax+b  Comparing coefficients:         a=2a  ∧  a+b=b          a=0, b=b  Hence f(x)=b  Same result if f(x) be supposed? ax^2 +bx+c
$${Same}\:{answer}\:{as}\:{above}\:{but}\:{with}\:{different}\:{process}\: \\ $$$${Suppose}\:{that}\:{f}\left({x}\right)\:{is}\:{a}\:{linear}\:{polynomial}\:{ax}+{b} \\ $$$$\:\:\:\:\:\:{f}\left({x}\right)={ax}+{b} \\ $$$$\:\:\:\:\:\:{f}\left(\mathrm{2}{x}+\mathrm{1}\right)={a}\left(\mathrm{2}{x}+\mathrm{1}\right)+{b}=\mathrm{2}{ax}+{a}+{b} \\ $$$${As}\:\:\:\:{f}\left(\mathrm{2}{x}+\mathrm{1}\right)={f}\left({x}\right) \\ $$$${So}\:\:\:\:\mathrm{2}{ax}+{a}+{b}={ax}+{b} \\ $$$${Comparing}\:{coefficients}: \\ $$$$\:\:\:\:\:\:\:{a}=\mathrm{2}{a}\:\:\wedge\:\:{a}+{b}={b} \\ $$$$\:\:\:\:\:\:\:\:{a}=\mathrm{0},\:{b}={b} \\ $$$${Hence}\:{f}\left({x}\right)={b} \\ $$$${Same}\:{result}\:{if}\:{f}\left({x}\right)\:{be}\:{supposed}?\:{ax}^{\mathrm{2}} +{bx}+{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *