Menu Close

Find-all-f-R-R-such-that-f-x-2-yf-x-xf-x-y-




Question Number 677 by prakash jain last updated on 22/Feb/15
Find all f: R→R such that  f(x^2 +yf(x))=xf(x+y)
Findallf:RRsuchthatf(x2+yf(x))=xf(x+y)
Commented by 123456 last updated on 22/Feb/15
suposing f(x)=ax+b  f[x^2 +yf(x)]=xf(x+y)  f[x^2 +y(ax+b)]=x[a(x+y)+b]  f(x^2 +axy+by)=x(ax+ay)+bx  a(x^2 +axy+by)+b=ax^2 +axy+bx  ax^2 +a^2 xy+aby+b=ax^2 +axy+by  if b=0⇒ax^2 +a^2 xy=ax^2 +axy⇔axy=0∨a=1,f(x)=x  if a=0⇒b=by⇔y=1∨b=0,f(x)=0
suposingf(x)=ax+bf[x2+yf(x)]=xf(x+y)f[x2+y(ax+b)]=x[a(x+y)+b]f(x2+axy+by)=x(ax+ay)+bxa(x2+axy+by)+b=ax2+axy+bxax2+a2xy+aby+b=ax2+axy+byifb=0ax2+a2xy=ax2+axyaxy=0a=1,f(x)=xifa=0b=byy=1b=0,f(x)=0

Leave a Reply

Your email address will not be published. Required fields are marked *