Menu Close

Find-all-ordered-pairs-a-b-so-that-ab-a-b-is-an-integer-a-and-b-are-integers-




Question Number 10944 by 314159 last updated on 03/Mar/17
Find all ordered pairs (a,b) so that ((ab)/(a+b)) is an integer.  (a and b are integers).
Findallorderedpairs(a,b)sothataba+bisaninteger.(aandbareintegers).
Commented by FilupS last updated on 03/Mar/17
n=((ab)/(a+b)),     n, a, b ∈ Z     n=((ab)/(a+b))    ⇒    ab≥a+b  ∵∀(ab<a+b) ⇒ 0<n<1 ⇒ n∉Z     ab≥a+b  a(b−1)=b  a=(b/(b−1))  ∴ (b/(b−1))∈Z  if b=2   ⇒   a=(2/(2−1))=2     ∴(2, 2) is a solution.  I am unsure if this is the only solution  because this is a bad attempt
n=aba+b,n,a,bZn=aba+baba+b(ab<a+b)0<n<1nZaba+ba(b1)=ba=bb1bb1Zifb=2a=221=2(2,2)isasolution.Iamunsureifthisistheonlysolutionbecausethisisabadattempt
Commented by mrW1 last updated on 04/Mar/17
i think there should be infinite number pairs:  2/2  3/6  4/4    4/12  5/20  6/6    6/12    6/30  7/42  8/8    8/24    8/56  9/18    9/72  10/10    10/15    10/40  11/110  12/12    12/24    12/36    12/60   12/132  13/156  14/14    14/84    14/182  ......
ithinkthereshouldbeinfinitenumberpairs:2/23/64/44/125/206/66/126/307/428/88/248/569/189/7210/1010/1510/4011/11012/1212/2412/3612/6012/13213/15614/1414/8414/182
Answered by mrW1 last updated on 04/Mar/17
let ((ab)/(a+b))=n  let b≥a and b=ka (k≥1)  ⇒((aka)/((1+k)a))=n  a=((1+k)/k)×n=n+(n/k)  with (n/k)=i or k=(n/i)  ⇒a=n+i  b=ka=(n/i)(n+i)=n(1+(n/i))  with (n/i)=j or n=ji  ⇒a=n+i=ji+i=(1+j)i  ⇒b=n(1+j)=j(1+j)i    i.e. the solution is   { ((a=(1+j)i)),((b=j(1+j)i)) :}  i,j∈N    e.g.  i=1, j=1,2,3,4...  a/b=2/2, 3/6, 4/12, 5/20, 6/30......    i=2, j=1,2,3,4...  a/b=4/4, 6/12, 8/24, 10/40, 12/60......    i=3, j=1,2,3,4...  a/b=6/6, 9/18, 12/36, 15/60, 18/90......  .....    We see in the solution that a is the  product of 2 numbers and b is the  product of 3 numbers and b=a×j.    For every a ≥2,   if a is a prime number, there is one  corresponding value for b, and  if a is no prime number, there are two  or more corresponding values for b.    E.g. a=7 (prime number) which can  only be expressed as  7×1   (j=6)  ⇒there is only one value for b:  b=7×6=42    E.g. a=12 which can be expressed as  12×1  (j=11)  3×4   (j=2)  4×3   (j=3)  2×6   (j=1)  6×2   (j=5)  ⇒there are 5 values for b:  b=12×1=12  b=12×2=24  b=12×3=36  b=12×5=60  b=12×11=132    the pairs of a and b for a from 2 till 14  see comment above.
letaba+b=nletbaandb=ka(k1)aka(1+k)a=na=1+kk×n=n+nkwithnk=iork=nia=n+ib=ka=ni(n+i)=n(1+ni)withni=jorn=jia=n+i=ji+i=(1+j)ib=n(1+j)=j(1+j)ii.e.thesolutionis{a=(1+j)ib=j(1+j)ii,jNe.g.i=1,j=1,2,3,4a/b=2/2,3/6,4/12,5/20,6/30i=2,j=1,2,3,4a/b=4/4,6/12,8/24,10/40,12/60i=3,j=1,2,3,4a/b=6/6,9/18,12/36,15/60,18/90..Weseeinthesolutionthataistheproductof2numbersandbistheproductof3numbersandb=a×j.Foreverya2,ifaisaprimenumber,thereisonecorrespondingvalueforb,andifaisnoprimenumber,therearetwoormorecorrespondingvaluesforb.E.g.a=7(primenumber)whichcanonlybeexpressedas7×1(j=6)thereisonlyonevalueforb:b=7×6=42E.g.a=12whichcanbeexpressedas12×1(j=11)3×4(j=2)4×3(j=3)2×6(j=1)6×2(j=5)thereare5valuesforb:b=12×1=12b=12×2=24b=12×3=36b=12×5=60b=12×11=132thepairsofaandbforafrom2till14seecommentabove.
Commented by FilupS last updated on 04/Mar/17
I Tried a slimilar subtitution, but couldnt  work with it.Awesome job
ITriedaslimilarsubtitution,butcouldntworkwithit.Awesomejob

Leave a Reply

Your email address will not be published. Required fields are marked *