Menu Close

Find-all-positive-integers-n-for-which-there-exist-non-negative-integer-a-1-a-2-a-3-a-n-Such-that-1-2-a-1-1-2-a-2-1-2-a-3-1-2-a-n-1-3-a-1-2-3-a-




Question Number 5834 by sanusihammed last updated on 31/May/16
Find all positive integers n for which there exist  non−negative integer . a_(1 ) a_2  a_3  ....... a_n  . Such that  (1/2^a_1  ) + (1/2^a_2  ) + (1/2^a_3  ) + .... + (1/2^a_n  ) = (1/3^a_1  ) + (2/3^a_2  ) + .... + (n/3^a_n  ) = 1    Please help.
$${Find}\:{all}\:{positive}\:{integers}\:{n}\:{for}\:{which}\:{there}\:{exist} \\ $$$${non}−{negative}\:{integer}\:.\:{a}_{\mathrm{1}\:} {a}_{\mathrm{2}} \:{a}_{\mathrm{3}} \:…….\:{a}_{{n}} \:.\:{Such}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}^{{a}_{\mathrm{1}} } }\:+\:\frac{\mathrm{1}}{\mathrm{2}^{{a}_{\mathrm{2}} } }\:+\:\frac{\mathrm{1}}{\mathrm{2}^{{a}_{\mathrm{3}} } }\:+\:….\:+\:\frac{\mathrm{1}}{\mathrm{2}^{{a}_{{n}} } }\:=\:\frac{\mathrm{1}}{\mathrm{3}^{{a}_{\mathrm{1}} } }\:+\:\frac{\mathrm{2}}{\mathrm{3}^{{a}_{\mathrm{2}} } }\:+\:….\:+\:\frac{{n}}{\mathrm{3}^{{a}_{{n}} } }\:=\:\mathrm{1} \\ $$$$ \\ $$$${Please}\:{help}. \\ $$$$ \\ $$
Commented by Yozzii last updated on 31/May/16
n=1⇒(1/2^a_1  )=(1/3^a_1  )⇒a_1 =0.  Σ_(i=1) ^n (1/2^a_i  )=Σ_(i=1) ^n (i/3^a_o  )  Σ_(i=1) ^n ((1/2^a_i  )−(i/3^a_i  ))=0  Σ_(i=1) ^n (((3^a_i  −i2^a_i  )/6^a_i  ))=0  6^(Σ_(l=1) ^n a_l ) (Σ_(i=1) ^n ((3^a_i  −i2^a_i  )/(6a^i )))=0  Σ_(i=1) ^n {6^(Σ_(l=1) ^n a_l −a_i ) (3^a_i  −i2^a_i  )}=0
$${n}=\mathrm{1}\Rightarrow\frac{\mathrm{1}}{\mathrm{2}^{{a}_{\mathrm{1}} } }=\frac{\mathrm{1}}{\mathrm{3}^{{a}_{\mathrm{1}} } }\Rightarrow{a}_{\mathrm{1}} =\mathrm{0}. \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{{a}_{{i}} } }=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{i}}{\mathrm{3}^{{a}_{{o}} } } \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{2}^{{a}_{{i}} } }−\frac{{i}}{\mathrm{3}^{{a}_{{i}} } }\right)=\mathrm{0} \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{3}^{{a}_{{i}} } −{i}\mathrm{2}^{{a}_{{i}} } }{\mathrm{6}^{{a}_{{i}} } }\right)=\mathrm{0} \\ $$$$\mathrm{6}^{\underset{{l}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{l}} } \left(\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{3}^{{a}_{{i}} } −{i}\mathrm{2}^{{a}_{{i}} } }{\mathrm{6}{a}^{{i}} }\right)=\mathrm{0} \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left\{\mathrm{6}^{\underset{{l}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{l}} −{a}_{{i}} } \left(\mathrm{3}^{{a}_{{i}} } −{i}\mathrm{2}^{{a}_{{i}} } \right)\right\}=\mathrm{0} \\ $$$$ \\ $$
Commented by sanusihammed last updated on 31/May/16
I appreciate
$${I}\:{appreciate} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *