Menu Close

Find-all-positive-integers-n-for-which-there-exist-non-negative-integer-a-1-a-2-a-3-a-n-Such-that-1-2-a-1-1-2-a-2-1-2-a-n-1-3-a-1-2-3-a-2-




Question Number 6133 by sanusihammed last updated on 15/Jun/16
Find all positive integers n for which there exist non negative  integer  a_(1 ) , a_2  , a_3  ,  ..... , a_(n ) .   Such that .  (1/2^a_1  )+(1/2^a_2  )+.....+(1/2^a_n  )  =  (1/3^a_1  )+(2/3^a_2  )+....+(n/3^a_n  ) = 1
$${Find}\:{all}\:{positive}\:{integers}\:{n}\:{for}\:{which}\:{there}\:{exist}\:{non}\:{negative} \\ $$$${integer}\:\:{a}_{\mathrm{1}\:} ,\:{a}_{\mathrm{2}} \:,\:{a}_{\mathrm{3}} \:,\:\:…..\:,\:{a}_{{n}\:} .\:\:\:{Such}\:{that}\:. \\ $$$$\frac{\mathrm{1}}{\mathrm{2}^{{a}_{\mathrm{1}} } }+\frac{\mathrm{1}}{\mathrm{2}^{{a}_{\mathrm{2}} } }+…..+\frac{\mathrm{1}}{\mathrm{2}^{{a}_{{n}} } }\:\:=\:\:\frac{\mathrm{1}}{\mathrm{3}^{{a}_{\mathrm{1}} } }+\frac{\mathrm{2}}{\mathrm{3}^{{a}_{\mathrm{2}} } }+….+\frac{{n}}{\mathrm{3}^{{a}_{{n}} } }\:=\:\mathrm{1} \\ $$
Commented by prakash jain last updated on 15/Jun/16
(1/2)+(1/2^2 )+(1/2^3 )+...up to ∞=1  if all of a_1 ,a_2 ,...,a_n  are non−zero then for  finite n.  so (1/2^a_1  )+(1/2^a_2  )+...+(1/2^a_n  )<1   This implies that for   (1/2^a_1  )+(1/2^a_2  )+...+(1/2^a_n  )=1   (n=1 and a_1 =0)  only one solution exists.  i.e n=1 and a_1 =0
$$\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }+…\mathrm{up}\:\mathrm{to}\:\infty=\mathrm{1} \\ $$$$\mathrm{if}\:\mathrm{all}\:\mathrm{of}\:{a}_{\mathrm{1}} ,{a}_{\mathrm{2}} ,…,{a}_{{n}} \:\mathrm{are}\:\mathrm{non}−\mathrm{zero}\:\mathrm{then}\:\mathrm{for} \\ $$$$\mathrm{finite}\:{n}. \\ $$$$\mathrm{so}\:\frac{\mathrm{1}}{\mathrm{2}^{{a}_{\mathrm{1}} } }+\frac{\mathrm{1}}{\mathrm{2}^{{a}_{\mathrm{2}} } }+…+\frac{\mathrm{1}}{\mathrm{2}^{{a}_{{n}} } }<\mathrm{1}\: \\ $$$$\mathrm{This}\:\mathrm{implies}\:\mathrm{that}\:\mathrm{for} \\ $$$$\:\frac{\mathrm{1}}{\mathrm{2}^{{a}_{\mathrm{1}} } }+\frac{\mathrm{1}}{\mathrm{2}^{{a}_{\mathrm{2}} } }+…+\frac{\mathrm{1}}{\mathrm{2}^{{a}_{{n}} } }=\mathrm{1}\: \\ $$$$\left({n}=\mathrm{1}\:\mathrm{and}\:{a}_{\mathrm{1}} =\mathrm{0}\right) \\ $$$$\mathrm{only}\:\mathrm{one}\:\mathrm{solution}\:\mathrm{exists}. \\ $$$${i}.{e}\:{n}=\mathrm{1}\:\mathrm{and}\:{a}_{\mathrm{1}} =\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *