Menu Close

Find-all-positive-integers-n-such-that-n-2014-and-3-n-1-n-will-be-a-perfect-square-integer-




Question Number 1379 by 314159 last updated on 27/Jul/15
Find all positive integers n such that    n≤2014 and 3^(n−1) .n  will be a perfect square integer.
Findallpositiveintegersnsuchthatn2014and3n1.nwillbeaperfectsquareinteger.
Commented by 123456 last updated on 26/Jul/15
m≡0,1,2,3,4(mod 5)  n=m^2 ≡0,1,4(mod 5)  n−1≡0(mod 2)  n≡1(mod 2)  N.C: { ((n≡0(mod 5)∨n≡1(mod 5)∨n≡4(mod5))),((n≡1(mod 2))) :}
m0,1,2,3,4(mod5)n=m20,1,4(mod5)n10(mod2)n1(mod2)N.C:{n0(mod5)n1(mod5)n4(mod5)n1(mod2)
Commented by 314159 last updated on 27/Jul/15
How many positive integers?
Howmanypositiveintegers?
Commented by prakash jain last updated on 27/Jul/15
n=3^(2k) .(2l+1)^2         k, l∈N      n odd, 3^(n−1) .3^(2k) .(2l+1)^2 =3^((even power)) .(whole square)  n=3^(2k−1) .(2l)^2                       k, l∈N      n even, 3^(n−1) .3^(2k−1) .(2l)^2 =3^((even power)) .(whole square)  choose k and l large enough so that n≥2014.  There are infinitely many +ve integers satisfying  th condiion.
n=32k.(2l+1)2k,lNnodd,3n1.32k.(2l+1)2=3(evenpower).(wholesquare)n=32k1.(2l)2k,lNneven,3n1.32k1.(2l)2=3(evenpower).(wholesquare)choosekandllargeenoughsothatn2014.Thereareinfinitelymany+veintegerssatisfyingthcondiion.
Commented by 314159 last updated on 27/Jul/15
please..consider  n≤2014...  sorry..for my mistake
please..considern2014sorry..formymistake
Commented by 314159 last updated on 28/Jul/15
please consider (3^(n−1) .n) will be a perfect square integer.
pleaseconsider(3n1.n)willbeaperfectsquareinteger.

Leave a Reply

Your email address will not be published. Required fields are marked *