Menu Close

find-all-possible-values-of-cos-such-that-2cot-2-cos-0-




Question Number 10916 by okhema last updated on 02/Mar/17
find all possible values of cosθ such  that 2cot^2 θ+cosθ=0
findallpossiblevaluesofcosθsuchthat2cot2θ+cosθ=0
Answered by sandy_suhendra last updated on 02/Mar/17
((2cos^2 θ)/(sin^2 θ)) + cosθ =0  ((2cos^2 θ+sin^2 θcosθ)/(sin^2 θ)) = 0  ((2cos^2 θ+(1−cos^2 θ)cosθ)/(sin^2 θ)) = 0  ((2cos^2 θ+cosθ−cos^3 θ)/(sin^2 θ)) = 0  ((−cosθ(cos^2 θ−2cosθ−1))/(sin^2 θ)) = 0  (1) −cosθ=0 ⇒ cosθ=0  (2) cos^2 θ−2cosθ−1=0         cosθ = ((2±(√(4+4)))/2) = ((2±2(√2))/2) = 1±(√2)        cosθ = 1+(√2) (not feasible because cosθ > 1)          cosθ = 1−(√2)
2cos2θsin2θ+cosθ=02cos2θ+sin2θcosθsin2θ=02cos2θ+(1cos2θ)cosθsin2θ=02cos2θ+cosθcos3θsin2θ=0cosθ(cos2θ2cosθ1)sin2θ=0(1)cosθ=0cosθ=0(2)cos2θ2cosθ1=0cosθ=2±4+42=2±222=1±2cosθ=1+2(notfeasiblebecausecosθ>1)cosθ=12
Commented by okhema last updated on 03/Mar/17
thats what i got but not in surd form
thatswhatigotbutnotinsurdform

Leave a Reply

Your email address will not be published. Required fields are marked *