Menu Close

Find-all-real-solutions-y-to-the-equation-sin-dy-dx-sin-d-2-y-dx-2-0-For-each-solution-determine-the-value-of-Q-max-r-1-n-sin-d-r-y-dx-r-giving-the-value-s-of-x-for-which-Q-ar




Question Number 2054 by Yozzi last updated on 01/Nov/15
Find all real solutions y to the equation      sin((dy/dx))+sin((d^2 y/dx^2 ))=0 .  For each solution determine the value of  Q=max(Σ_(r=1) ^n sin((d^r y/dx^r ))), giving the value(s)  of x for which Q arises.
Findallrealsolutionsytotheequationsin(dydx)+sin(d2ydx2)=0.ForeachsolutiondeterminethevalueofQ=max(nr=1sin(drydxr)),givingthevalue(s)ofxforwhichQarises.
Commented by 123456 last updated on 01/Nov/15
y=k
y=k
Commented by 123456 last updated on 01/Nov/15
∣(dy/dx)∣≪1,∣(d^2 y/dx^2 )∣≪1,∣θ∣≪1⇒sin θ≈θ  (dy/dx)+(d^2 y/dx^2 )=0  λ+λ^2 =λ(1+λ)=0  y=C_1 +C_2 e^(−x)   −−−−−−−−−−−  y=C_1 +C_2 e^(−x)   (dy/dx)=−C_2 e^(−x)   (d^2 y/dx^2 )=C_2 e^(−x)   sin (dy/dx)+sin (d^2 y/dx^2 )=0  −sin C_2 e^(−x) +sin C_2 e^(−x) =0 (T)  so  y=C_1 +C_2 e^(−x)   is a solution, but not sure if its the  full solution.
dydx∣≪1,d2ydx2∣≪1,θ∣≪1sinθθdydx+d2ydx2=0λ+λ2=λ(1+λ)=0y=C1+C2exy=C1+C2exdydx=C2exd2ydx2=C2exsindydx+sind2ydx2=0sinC2ex+sinC2ex=0(T)soy=C1+C2exisasolution,butnotsureifitsthefullsolution.
Commented by prakash jain last updated on 01/Nov/15
  Q=max(Σ_(r=1) ^n sin((d^r y/dx^r )))=Σ_(r=1) ^n sin (d^r y/dx^r )  max seems to be unnecessary function since  there is only one parameter sum.
Q=max(nr=1sin(drydxr))=nr=1sindrydxrmaxseemstobeunnecessaryfunctionsincethereisonlyoneparametersum.
Commented by Yozzi last updated on 01/Nov/15
Sorry for the miscommunication.  I was just thinking then about  the value of the sum Σ_(r=1) ^n sin((d^r y/dx^r ))   assumimg we use one of the solutions.  So, if y=A+Be^(−x) +2nπx use it to  deduce Q.
Sorryforthemiscommunication.Iwasjustthinkingthenaboutthevalueofthesumnr=1sin(drydxr)assumimgweuseoneofthesolutions.So,ify=A+Bex+2nπxuseittodeduceQ.
Commented by prakash jain last updated on 01/Nov/15
ok. understood.
ok.understood.
Answered by prakash jain last updated on 01/Nov/15
u=(dy/dx),v=(d^2 y/dx^2 ), sin u=−sin v  v=2nπ−u, v=(2n+1)π+u  (d^2 y/dx^2 )=(2n+1)π+(dy/dx)     ....(1)  y=c_1 +c_2 e^x −(2n+1)πx    .....(solution A)  y′=c_2 e^x −(2n+1)π, y′′=c_2 e^x ⇒sin(y′′)=−sin (y′)  (d^2 y/dx^2 )=2nπ−(dy/dx)                ...(2)  Solution for (2)  y=c_1 +c_2 e^(−x) +2nπx           .....(solution B)  y′=−c_2 e^(−x) +2nπ, y′′=c_2 e^(−x) ⇒sin(y′′)=−sin (y′)
u=dydx,v=d2ydx2,sinu=sinvv=2nπu,v=(2n+1)π+ud2ydx2=(2n+1)π+dydx.(1)y=c1+c2ex(2n+1)πx..(solutionA)y=c2ex(2n+1)π,y=c2exsin(y)=sin(y)d2ydx2=2nπdydx(2)Solutionfor(2)y=c1+c2ex+2nπx..(solutionB)y=c2ex+2nπ,y=c2exsin(y)=sin(y)
Commented by Yozzi last updated on 01/Nov/15
Let y=A+Be^(−x) +2nπx (Solution B)  y^′ =−Be^(−x) +2nπ  y^(′′) =Be^(−x)   y^(′′′) =−Be^(−x)   y^4 =Be^(−x)   ....  y^n = { ((−Be^(−x)  for odd n>1)),((Be^(−x)      for even n≥2)) :}  ∴Σ_(r=1) ^n sin(y^((r)) )=sin(2nπ−Be^(−x) )+sin(Be^(−x) )+sin(−Be^(−x) )+sin(Be^(−x) )+...+sin(y^((n)) )  Σ_(r=1) ^n sin(y^((r)) )= { ((−sinBe^(−x)   odd n)),((0                      even n)) :}  Q=max(−sinBe^(−x) )=1   when Be^(−x) =((3π)/2)⇒e^(−x) =((3π)/(2B))  If B>0⇒−x=ln(((3π)/(2B)))  x=ln(((2B)/(3π))).   If B<0, let B=−T, T>0  ∴Σ_(r=1) ^n sin(y^((n)) )=sin(Te^(−x) )  Q=1⇒x=ln(((2T)/π)).
Lety=A+Bex+2nπx(SolutionB)y=Bex+2nπy=Bexy=Bexy4=Bex.yn={Bexforoddn>1Bexforevenn2nr=1sin(y(r))=sin(2nπBex)+sin(Bex)+sin(Bex)+sin(Bex)++sin(y(n))nr=1sin(y(r))={sinBexoddn0evennQ=max(sinBex)=1whenBex=3π2ex=3π2BIfB>0x=ln(3π2B)x=ln(2B3π).IfB<0,letB=T,T>0nr=1sin(y(n))=sin(Tex)Q=1x=ln(2Tπ).
Commented by Yozzi last updated on 01/Nov/15
y=A+Be^(−x) +2nπx  ⇒y^′ =−Be^(−x) +2nπ  y^(′′) =Be^(−x)   ∴y^(′′) +y^′ =2nπ    y=A+Be^x +(2n+1)πx  y^′ =Be^x +(2n+1)π  y^(′′) =Be^x   y^(′′) −y^′ =−(2n+1)π
y=A+Bex+2nπxy=Bex+2nπy=Bexy+y=2nπy=A+Bex+(2n+1)πxy=Bex+(2n+1)πy=Bexyy=(2n+1)π
Commented by prakash jain last updated on 01/Nov/15
Mistake is sign of solution (A). Corrected.
Mistakeissignofsolution(A).Corrected.
Commented by Yozzi last updated on 02/Nov/15
Awesome.
Awesome.

Leave a Reply

Your email address will not be published. Required fields are marked *