Menu Close

find-all-value-of-z-its-saytisfies-1-4z-z-3-1-4z-n-0-z-n-4-n-2-




Question Number 132633 by mohammad17 last updated on 15/Feb/21
find all value of z its saytisfies   (1/(4z−z^3 ))=(1/(4z))+Σ_(n=0) ^∞ (z^n /4^(n+2) )
$${find}\:{all}\:{value}\:{of}\:{z}\:{its}\:{saytisfies}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{4}{z}−{z}^{\mathrm{3}} }=\frac{\mathrm{1}}{\mathrm{4}{z}}+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{z}^{{n}} }{\mathrm{4}^{{n}+\mathrm{2}} } \\ $$
Answered by TheSupreme last updated on 15/Feb/21
Σ_(n=0) ^∞ (z^n /4^(n+2) )=(1/(16))Σ_(n=0) ^∞ ((z/4))^n =(1/(16)) ((1/(1−(z/4))))=(1/(16))((4/(4−z)))  (1/(4z−z^3 ))=(1/(4z))+(1/(4(4−z)))  (1/(z(4−z^2 )))=(1/(4z))+(1/(4(4−z)))  ((4(4−z)−(4−z)(4−z^2 )−z(4−z^2 ))/(z(2−z)(2+z)4(4−z)))=0  16−4z−(16−4z^2 −4z+z^3 )−4z+z^3 =0  4z^2 −4z=0  4z(z−1)=0  z=1  z=0 ... out of Domain  z=1
$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{z}^{{n}} }{\mathrm{4}^{{n}+\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{16}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{{z}}{\mathrm{4}}\right)^{{n}} =\frac{\mathrm{1}}{\mathrm{16}}\:\left(\frac{\mathrm{1}}{\mathrm{1}−\frac{{z}}{\mathrm{4}}}\right)=\frac{\mathrm{1}}{\mathrm{16}}\left(\frac{\mathrm{4}}{\mathrm{4}−{z}}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{4}{z}−{z}^{\mathrm{3}} }=\frac{\mathrm{1}}{\mathrm{4}{z}}+\frac{\mathrm{1}}{\mathrm{4}\left(\mathrm{4}−{z}\right)} \\ $$$$\frac{\mathrm{1}}{{z}\left(\mathrm{4}−{z}^{\mathrm{2}} \right)}=\frac{\mathrm{1}}{\mathrm{4}{z}}+\frac{\mathrm{1}}{\mathrm{4}\left(\mathrm{4}−{z}\right)} \\ $$$$\frac{\mathrm{4}\left(\mathrm{4}−{z}\right)−\left(\mathrm{4}−{z}\right)\left(\mathrm{4}−{z}^{\mathrm{2}} \right)−{z}\left(\mathrm{4}−{z}^{\mathrm{2}} \right)}{{z}\left(\mathrm{2}−{z}\right)\left(\mathrm{2}+{z}\right)\mathrm{4}\left(\mathrm{4}−{z}\right)}=\mathrm{0} \\ $$$$\mathrm{16}−\mathrm{4}{z}−\left(\mathrm{16}−\mathrm{4}{z}^{\mathrm{2}} −\mathrm{4}{z}+{z}^{\mathrm{3}} \right)−\mathrm{4}{z}+{z}^{\mathrm{3}} =\mathrm{0} \\ $$$$\mathrm{4}{z}^{\mathrm{2}} −\mathrm{4}{z}=\mathrm{0} \\ $$$$\mathrm{4}{z}\left({z}−\mathrm{1}\right)=\mathrm{0} \\ $$$${z}=\mathrm{1} \\ $$$${z}=\mathrm{0}\:…\:{out}\:{of}\:{Domain} \\ $$$${z}=\mathrm{1} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *