Menu Close

find-arctan-1-x-1-dx-




Question Number 67017 by mathmax by abdo last updated on 21/Aug/19
find ∫  arctan(1+(√(x+1)))dx
findarctan(1+x+1)dx
Commented by mathmax by abdo last updated on 24/Aug/19
let I =∫ arctan(1+(√(x+1)))dx  changement (√(x+1))=t give x+1=t^2  ⇒  I =∫  arctan(1+t)(2t)dt =2 ∫  t arctan(t+1)dt  by parts  I =2{   (t^2 /2) arctan(t+1)−∫   (t^2 /2)×(1/(1+(t+1)^2 ))dt}  =t^2  arctan(t+1)−∫   (t^2 /(1+t^2 +2t+1))dt  ∫   (t^2 /(t^(2 ) +2t+2))dt =∫  ((t^2  +2t+2−2t−2)/(t^2  +2t+2))dt =t−∫((2t+2)/(t^2  +2t +2))dt  =t−ln(t^2 +2t+2) ⇒I =t^2  arctan(t+1)−t+ln(t^2 +2t+2) +c  I=(x+1)arctan(1+(√(x+1)))−(√(x+1)) +ln(x+3+2(√(x+1))) +c
letI=arctan(1+x+1)dxchangementx+1=tgivex+1=t2I=arctan(1+t)(2t)dt=2tarctan(t+1)dtbypartsI=2{t22arctan(t+1)t22×11+(t+1)2dt}=t2arctan(t+1)t21+t2+2t+1dtt2t2+2t+2dt=t2+2t+22t2t2+2t+2dt=t2t+2t2+2t+2dt=tln(t2+2t+2)I=t2arctan(t+1)t+ln(t2+2t+2)+cI=(x+1)arctan(1+x+1)x+1+ln(x+3+2x+1)+c

Leave a Reply

Your email address will not be published. Required fields are marked *