Menu Close

find-arctan-1-x-2-x-dx-




Question Number 76355 by mathmax by abdo last updated on 26/Dec/19
find ∫ ((arctan((√(1+x))))/(2+x))dx
$${find}\:\int\:\frac{{arctan}\left(\sqrt{\mathrm{1}+{x}}\right)}{\mathrm{2}+{x}}{dx} \\ $$
Answered by john santu last updated on 27/Dec/19
let (√(1+x))=tant , 1+x=tan^2 t ,  2+x=sec^2 t  then dx = 2tant sec^2 t dt
$${let}\:\sqrt{\mathrm{1}+{x}}={tant}\:,\:\mathrm{1}+{x}={tan}^{\mathrm{2}} {t}\:, \\ $$$$\mathrm{2}+{x}={sec}^{\mathrm{2}} {t}\:\:{then}\:{dx}\:=\:\mathrm{2}{tant}\:{sec}^{\mathrm{2}} {t}\:{dt} \\ $$
Answered by john santu last updated on 27/Dec/19
=∫ ((2t×tan t ×sec^2 t dt)/(sec^2 t))  = ∫ 2t tan t dt (using integration by part)
$$=\int\:\frac{\mathrm{2}{t}×{tan}\:{t}\:×{sec}^{\mathrm{2}} {t}\:{dt}}{{sec}^{\mathrm{2}} {t}} \\ $$$$=\:\int\:\mathrm{2}{t}\:{tan}\:{t}\:{dt}\:\left({using}\:{integration}\:{by}\:{part}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *