Question Number 68039 by mathmax by abdo last updated on 03/Sep/19
$${find}\:\int\:\:{arctan}\left({x}+\frac{\mathrm{1}}{{x}}\right){dx} \\ $$
Commented by mathmax by abdo last updated on 04/Sep/19
$${let}\:{I}\:=\int\:{arctan}\left({x}+\frac{\mathrm{1}}{{x}}\right){dx}\:\:{by}\:{parts}\:{we}\:{have} \\ $$$${I}\:={xarctan}\left({x}+\frac{\mathrm{1}}{{x}}\right)−\int\:{x}\frac{\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}{\mathrm{1}+\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} }{dx} \\ $$$$={xarctan}\left({x}+\frac{\mathrm{1}}{{x}}\right)−\int\:\:\frac{{x}\left({x}^{\mathrm{2}} −\mathrm{1}\right)}{{x}^{\mathrm{2}} \:+\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }{dx}\:\:{but} \\ $$$${J}=\int\:\:\frac{{x}\left({x}^{\mathrm{2}} −\mathrm{1}\right)}{{x}^{\mathrm{2}} \:+\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:=\int\:\:\frac{{x}^{\mathrm{3}} −{x}}{{x}^{\mathrm{2}} \:+{x}^{\mathrm{4}} \:+\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{1}}{dx}\:=\int\:\:\frac{{x}^{\mathrm{3}} −{x}}{{x}^{\mathrm{4}} +\mathrm{3}{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$$${x}^{\mathrm{4}} \:+\mathrm{3}{x}^{\mathrm{2}} \:+\mathrm{1}\rightarrow{t}^{\mathrm{2}} \:+\mathrm{3}{t}\:+\mathrm{1}=\mathrm{0}\:\:\left({t}={x}^{\mathrm{2}} \right)\:\Delta\:=\mathrm{9}−\mathrm{4}\:=\mathrm{5}\:\:\Rightarrow \\ $$$$\left.{t}_{\mathrm{1}} =\frac{−\mathrm{3}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:\:{and}\:{t}_{\mathrm{2}} =\frac{−\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)\:\Rightarrow \\ $$$${x}^{\mathrm{4}} \:+\mathrm{3}{x}^{\mathrm{2}} \:+\mathrm{1}\:={t}^{\mathrm{2}} \:+\mathrm{3}{t}\:+\mathrm{1}\:=\left({t}−{t}_{\mathrm{1}} \right)\left({t}−{t}_{\mathrm{2}} \right)=\left({x}^{\mathrm{2}} −{t}_{\mathrm{1}} \right)\left({x}^{\mathrm{2}} −{t}_{\mathrm{2}} \right) \\ $$$$=\frac{\mathrm{1}}{{t}_{\mathrm{1}} −{t}_{\mathrm{2}} }\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} −{t}_{\mathrm{1}} }−\frac{\mathrm{1}}{{x}^{\mathrm{2}} −{t}_{\mathrm{2}} }\right)\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} −{t}_{\mathrm{1}} }−\frac{\mathrm{1}}{{x}^{\mathrm{2}} −{t}_{\mathrm{2}} }\right)\:\Rightarrow \\ $$$$\sqrt{\mathrm{5}}{J}\:=\int\:\:\frac{{x}^{\mathrm{3}} −{x}}{{x}^{\mathrm{2}} −{t}_{\mathrm{1}} }{dx}−\int\:\:\frac{{x}^{\mathrm{3}} −{x}}{{x}^{\mathrm{2}} −{t}_{\mathrm{2}} }{dx} \\ $$$$=\int\:\:\frac{{x}\left({x}^{\mathrm{2}} −{t}_{\mathrm{1}} \right)+{xt}_{\mathrm{1}} −{x}}{{x}^{\mathrm{2}} −{t}_{\mathrm{1}} }{dx}−\int\:\:\:\frac{{x}\left({x}^{\mathrm{2}} −{t}_{\mathrm{2}} \right)+{xt}_{\mathrm{2}} −{x}}{{x}^{\mathrm{2}} \:−{t}_{\mathrm{2}} }{dx} \\ $$$$=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:+\left({t}_{\mathrm{1}} −\mathrm{1}\right)\:\int\:\:\frac{{xdx}}{{x}^{\mathrm{2}} −{t}_{\mathrm{1}} }−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−\left({t}_{\mathrm{2}} −\mathrm{1}\right)\int\:\frac{{xdx}}{{x}^{\mathrm{2}} −{t}_{\mathrm{2}} }\:+{c} \\ $$$$=\frac{{t}_{\mathrm{1}} −\mathrm{1}}{\mathrm{2}}{ln}\mid{x}^{\mathrm{2}} −{t}_{\mathrm{1}} \mid\:−\frac{{t}_{\mathrm{2}} −\mathrm{1}}{\mathrm{2}}\:{ln}\mid{x}^{\mathrm{2}} −{t}_{\mathrm{2}} \mid\:+{c}\:\Rightarrow \\ $$$${I}\:={x}\:{arctan}\left({x}+\frac{\mathrm{1}}{{x}}\right)−\frac{{t}_{\mathrm{1}} −\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{5}}}{ln}\mid{x}^{\mathrm{2}} −{t}_{\mathrm{1}} \mid+\frac{{t}_{\mathrm{2}} −\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{5}}}{ln}\mid{x}^{\mathrm{2}} −{t}_{\mathrm{2}} \mid\:+{C}\:. \\ $$$$ \\ $$$$ \\ $$