Menu Close

Find-b-in-terms-of-a-if-a-a-b-a-b-1-a-where-a-and-b-are-whole-numbers-




Question Number 5226 by sanusihammed last updated on 02/May/16
Find b in terms of a if (√(a(a/b)))   =  ((a/b))^(1/a)     .  where a and b are  whole numbers.
Findbintermsofaifaab=(ab)1a.whereaandbarewholenumbers.
Commented by prakash jain last updated on 02/May/16
(((ab+a)/b))^(1/2) =((a/b))^(1/a)   (((ab+a)/b))^a =(a^2 /b^2 )  (((ab+a)^a )/a^2 )=(b^a /b^2 )  a^(a−2) (b+1)^a =b^(a−2)   Assume we are only dealing when both  LHS and RHS are real⇒(a^2 /b)>0⇒b>0  also a≠0 and b≠0  case a>0  (b+1)^a =((b/a))^(a−2)   LHS is a +ve interger so RHS must be +ve integer  continue
(ab+ab)1/2=(ab)1/a(ab+ab)a=a2b2(ab+a)aa2=bab2aa2(b+1)a=ba2AssumeweareonlydealingwhenbothLHSandRHSarereala2b>0b>0alsoa0andb0casea>0(b+1)a=(ba)a2LHSisa+veintergersoRHSmustbe+veintegercontinue
Answered by Yozzii last updated on 02/May/16
(a/( (√b)))=(a^(1/a) /b^(1/a) )  a^(1−(1/a)) =b^(0.5−(1/a))   ⇒b=(a^((a−1)/a) )^(1/((1/2)−(1/a)))      (a≠2)  b=a^(((a−1)/a)×((2a)/(a−2))) =a^((2(a−1))/(a−2))    a∈(W−{2})
ab=a1/ab1/aa11a=b0.51ab=(aa1a)1121a(a2)b=aa1a×2aa2=a2(a1)a2a(W{2})
Commented by FilupSmith last updated on 02/May/16
What is W?
WhatisW?
Commented by sanusihammed last updated on 02/May/16
Sorry it is not a ×(a/b) it is a(a/b)  just  3(1/3) as in mixed fraction.  Thanks for your help
Sorryitisnota×abitisaabjust313asinmixedfraction.Thanksforyourhelp
Commented by Yozzii last updated on 02/May/16
W={whole numbers}
W={wholenumbers}
Commented by FilupSmith last updated on 02/May/16
Isn′t that the same as Z?
IsntthatthesameasZ?
Commented by Yozzii last updated on 02/May/16
Answered by Yozzii last updated on 02/May/16
(√(a+(a/b)))=(a^(1/a) /b^(1/a) )       a,b∈{whole numbers}  a(1+(1/b))=(a^(2/a) /b^(2/a) )  a^a (1+(1/b))^a =a^2 /b^2   Let u=1/b  a^a (1+u)^a =a^2 u^2   Let l=1+u  ⇒l^a =a^(2−a) (l−1)^2   l^a =a^(2−a) (l^2 −2l+1)  l^a −a^(2−a) l^2 +2a^(2−a) l−a^(2−a) =0 (∗)  For a being a whole number, if   a≥5 then no general algebraic  solution exists for (∗), according to  the Abel−Ruffini theorem.
a+ab=a1/ab1/aa,b{wholenumbers}a(1+1b)=a2/ab2/aaa(1+1b)a=a2/b2Letu=1/baa(1+u)a=a2u2Letl=1+ula=a2a(l1)2la=a2a(l22l+1)laa2al2+2a2ala2a=0()Forabeingawholenumber,ifa5thennogeneralalgebraicsolutionexistsfor(),accordingtotheAbelRuffinitheorem.

Leave a Reply

Your email address will not be published. Required fields are marked *